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To: Bobby Johnston

From: Peter Fisher

Subject: Transmission lines

Date: August 28, 2018

A transmission line consists of two conductors in close proximity to each other, usually a fixed
distance apart, shown conceptually in Fig. ??. A transmission line carries high frequency sig-
nals between two places separated by more than a wavelength. The signal’s energy propagates
through the space between the conductors, usually through a dielectric. The standard RG-58 co-
axial transmission lines provides good example, Fig. ??. The memo provides an analysis of co-axial
transmission lines that generalizes to other types of transmission lines.

V(x,t) V(x+dx,t)

I(x,t) I(x+dx,t)

dx

Figure 1: Segment of length dx of conceptual transmission line with two conductors. The grey
rectangle is the region described in the text for the Faraday’s law calculation.

1 The General Idea of a Transmission Line

The transmission line supports a time and position varying voltage and current between the con-
ductors. One conductor may be grounded, in which there will be a linear charge density λ (x, t)
and current I (x, t) on the ungrounded conductor. In a little segment along the conductor from x
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Figure 2: Left: picture of the end of RG-58 coaxial cable. The inner conductor is copper, sur-
rounded by white insulator, in turn surrounded by copper braid, which is grounded. Black insu-
lation surrounds the copper braid. Right: Drawing of ideal RG-58.

to x+dx, the current flowing into the segment is I (x, t), out is I (x+ dx, t), so change conservation
says the rate of charge accumulation in the segment is,

dQ

dt
= λ̇ (x, t) = I (x+ dx, t)− I (x, t) =

dI

dx
dx.

Q = λdx There is a capacitance C = Cdx between the conductors so the potential at x is

V =
Q

C
=
λ

C

where C is the capacitance per unit length. Then V̇ = λ̇/C and we can combine the two equations
to get,

C dV
dT

=
dI

dx
. (1)

A loop along the top conductor from x to x+dx, between the conductors the point x+dx, back
along the bottom conductor from x, and finally back to the starting point from bottom to top at x,
(grey rectangle in Fig. ??) will have a magnetic flux through it from the current flowing in the top
conductor. Faraday’s law says,∫

Area

~B · d~a =

∫
Surface

~E · d~l→ E = L
dI

dt
,

where E is the electromotive force and L is the inductance. In this case,

E = V (x+ dx, t)− V (x, t) = LdxdI
dt

where L = L/dx is the inductance per unit length. Then,

V (x+ dx, t)− V (x, t)

dx
=
dV

dx
= LdI

dt
. (2)
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Differentiate Eq. ?? with respect to x, Eq. ?? with respect to t and eliminate the d2V/dxdt between
the equations to get,

d2I

dt2
= − 1

LC
d2I

dx2
,

that describes a current wave propagating with velocity v = 1/
√
LC down the upper conductor.

There is an identical expression for V and using Eq. ??,

V (x, t) = Vof (x± vt) =

√
L
C
Iof (x± vt) ,

and Z =
√
L/C = Vo/Io is the impedance of the transmission line. Since Z is the ratio of voltage

to current, it has the units of Ohms. Also,

Z =
L
C

=
V

I
=

λ

2πεI
ln
b

a
=
λ

I

1

C
=
λ

I
→ I = vλ.

As the current pulse propagates down the transmission line, the is a linear charge density pulse
along with it. The solutions are I (x, t) = Iof (x± vt) where the negative sign is for waves propa-
gating toward +x and the negative is for waves propagating in −x.

The simplest wave is a step wave,

I (x, t) = Ioθ (x± vt) ,

where θ (u) = 1 if u > 0 and 0 otherwise and is known as the Heavyside function. Fig. ?? shows a
step wave propagating in the +x direction. Ahead of the wave, E = B = 0 and the are no charges
or currents. Behind the wave, a current Io flows and the analysis above shows Vo = IoZ, so there
is a linear charge density on the upper conductor.

2 Terminating a transmission line

What happens when the wave reaches the end of the transmission line? Suppose a resistor R
connects the two conductors, Fig ??. The arriving step will apply a voltage Vo across the resistor,
causing a current IR = Vo/R to flow. A current pulse Io = Vo/Z arrives at the same time as the
voltage step. If R = Z, then IR = Io and all the current accompanying the voltage step flows
into the resistor, where it is dissipated as heat. If Io > IR, then the additional current has to go
somewhere. The additional current, equal to Io − IR cannot flow into the resistor as the relation
Vo = RIR must be maintained. The additional current can only flow on the transmission line if
it obeys I (x, t) ∝ f (x± vt) and the current is at the end of the line, so the additional current is
reflected and goes back down the line: Ir = Io,r (x+ vt) and Vo,r = Io,rZ. The total voltage along
the line behind the reflected pulse is Vo + Vo,r and in front of the pulse, it is just Vo. In front of the
pulse, the current is still Io = Vo/Z, but behind the pulse, the reflected current Ir flowing in the−x
direction partially cancels the current Io flowing in the +x direction. The magnetic field induced
by the currents is similarly effected.

If IR > Io, more current has to flow out of the transmission line into the resistor to maintain the
current-voltage relationship. This current can only come from a step function wave of negative
current propagating in the −x direction, Ir = Io − IR. Since the net current is less than zero, the
voltage pulse must also be negative.

This results in three important cases:
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Figure 3: Top graph shows R = Z termination for which all the current goes through the resistor.
Left and right show R > Z and R < Z, respectively. The grey regions show the direction of
current and size of voltage in the reflected wave.

1. R = Z - in this case, all the current flows into R and there are no returning waves.

2. R =∞ - no current can flow into the resistor and all the current reflects back down the line.
In front of the pulse the voltage is Vo and current is Io = Vo/Z. Behind the step, the voltage
is 2Vo and there is no net current (and no magnetic field.)

3. R = 0 - the conductors are shorted, so V = 0 and no current can flow between the con-
ductors. A negative wave of −Vo heads back down the line and the reflected wave is
Ir = −Io (x+ vt). Behind the wave, V = 0 and the current 2Io.

A transmission line carries a signal from one device to another and generally, the input resis-
tance of the receiving device should be the same, or “matched” to the line impedance.

3 Step function voltage source on a transmission line

Fig. ?? shows an ideal voltage source E connected to the ungrounded conductor of a transmission
line through a resistor R and switch S. S is closed at t = 0 and before then, there are no currents
or charges in the system. An ideal voltage source will provide whatever current is needed to the
load to keep the supply voltage at E . In realty, every voltage source has an internal resistance,
in this case R, the models the maximum current that the source can supply. So long as the load
resistance is much smaller than R, the voltage after R will be close to E . In the following, R >> Z.

When the switch closed, a step voltage moves at v = c/n down the line and, if the length of the
line is l, the step will reach the end of the line in time to = l/v. The ungrounded conductor has
no charge on it, so a current Io = E/R must flow down the line, with voltage Vo = IoZ = ZE/R.
Rend = ∞ at the end of the line (there is nothing there), so the pulse is reflected and returns,
reaching the near end of the line at t = 2to. While the pulse traveled down the line, the potential
at the near end of the line was Vo. When the return pulse reached the near end of the line, the
potential after t = 2to is,

V1 = Vo + IoZ + I1Z.
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Figure 4: A - current flowing down the line at t < to. B - return current just as it reaches the near
of the of the line at t = 2to. C - currents just as the second pulse reaches the near end of the line at
t = 4to.
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The first Vo is the potential supporting the current going down the line, the second IoZ is the
potential accompanying the return pulse, and I1Z is the potential for the additional current I1,
which results from the partial reflection of the returning pulse and is equal to,

I1 =
E − V1
R

.

The process repeats and at t = 4to,

V2 = V1 + I1Z + I2Z (3)

I2 =
E − V2
R

. (4)

After n round trips, the potential and current are,

Vn = Vn−1 + In−1Z + InZ (5)

In =
E − Vn
R

. (6)

Substituting Eq. ?? into Eq. ?? gives,

Vn = Vn−1 +
(E − Vn−1)Z

R
+

(E − Vn)Z

R
(7)

Vn

(
1 +

Z

R

)
= Vn−1

(
1− Z

R

)
+

2EZ
R

(8)

Vn − Vn−1 = Vn−1
1− Z

R

1 + Z
R

− Vn−1 +
2EZ
R

=
dV

dn
(9)

dV

dn
= − 2Z/R

1 + Z/R
V +

2EZ
R+ Z

(10)

' −2Z

R
+

2EZ
R

, (11)

with the last approximation from from the assumption that R >> Z. The number of round trips
in time t is,

n =
t

to
=

t
2l
v

→ dn

dt
=

v

2l
,

and from Eq. ??,
dV

dt
=
dV

dn

dn

dt
= −2Zv

2l
V +

2EZv
Rl

.

Z =
√
L/C and v = 1/

√
LC, so Zv = 1/C and ZV/l = 1/C. Finally,

dV

dt
= − 1

RC
V +

E
RC

,

which has solution V (t) = E (1− exp−t/RC).

This shows the cable charges up like a capacitance of C = Cl, but the charging happens by a
current running back and forth respecting V = IZ, laying down a linear charge density λ until
the line, or capacitor is fully charged, Fig. ??. For 400 m line, to ∼ 2.5µs, and you can see the steps
on an oscilloscope, Fig. ??.
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DRAFTFigure 5: Voltage as a function of time measured at the near end of the transmission line. Source:
TSG webpages.

4 The Coaxial Transmission Line

Fig. ?? shows RG-58 cable and Table ?? lists the relevant properties. RG-58 provides a specific
geometry that can be used to compute the electric and magnetic fields to find the inductance and
capacitance per unit length, which gives the impedance and wave velocity.

Quantity Value
a 0.41 mm
b 1.42 mm
ε 2.25 εo
v 0.666 c
C 100 pF/m
L 250 nH/m
Z 49.9 Ω

Table 1: Physical characteristics of RG-58 coaxial cable.

The current moving along will create a magnetic field according to Ampere’s law,∫
C

~B · d~l = µo

∫
A

~J · d~a.

Since the problem is symmetric under rotations around the x-axis, ~B = B (r) φ̂,

2πrB (r) = Iµo → ~B =
Iµo
2πr

φ̂.

Then using Faraday’s law to a segment of the cable of length l,

dΦ

dt
= L

dI

dt
=→ d

dt

∫ b

a

µo
2πr

ldr =
µo
2π

= ln
b

a
= L

dI

dt
,

gives L = L/l = (µo/2π) ln b/a.
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Figure 6: Left: equivalent circuit for transmission line with C = Cl. Right: Upper left photo is the
voltage pulse sent into the transmission line. The other three photos show various magnifications
of the voltage at the end of the transmission line as the wave travels back and forth. Source: TSG
webpages

For the capacitance per unit length, recall that in a segment of length l, the total charge will be
Qλl. The azimuthal symmetry implies that ~E = E (r) r̂. Gauss law applied to a cylinder of radius
r and length l is, ∫

A

~E · d~a =
Q

4πε
→ E (r) =

Q

2πrεl
.

The potential between the inner and outer conductors is then,

V =

∫ b

a

~E · d~r =
Q

2πεL
ln
b

a
=

λ

2πε
ln
b

a
.

Since Q = CV ,

C =
Q

V
=

2πεL

ln b/a
→ C =

C

L
=

2πε

ln b/a
.

The wave velocity is v = 1/
√
LC = 1/

√
εµo = c

n , where n =
√
ε/εo is the index of refraction.

The electromagnetic wave traveling down the transmission line carries energy via the Poynting
vector,

~S =
1

µo
~E × ~B,

and the total power carried by the electric and magnetic fields is,

P =

∫
Area

~S · d~a

which works out, for the fields found above, to P = V 2/Z. If the line is terminated with R = Z,
this is just exactly the power dissipated in the resistor, as it must be.
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