
MEMORANDUM
To: Bobby Johnston

From: Peter Fisher

Subject: Interface for NaI digitizer readout

Date: January 23, 2018

I have a utility called wavedump that readout out the CAEN 6720 digitizer, does the pulseheight
analysis for each pulse, and fills a 4096 channel histogram with the results. The histogram is
written out every second to /tmp/PlotData.txt. wavedump is written by CAEN and is robust,
so we do not want to make many changes to it. This memo describes the display and recording
program requirements. This program should be written in root and run on the same machine as
wavedump.

1 PMT and analog signal chain

The NaI crystal is a right cylinder of 2 inches diameter and 2 inches thickness. The crystal is
mounted on a PMT/Amplifier/HV supply package (Ortec 905-3). The PMT base has two outputs:
an voltage output from the amplifier with a 4 µs shaping time and a signal from the last dynode.
There are two controls: an on/off push button switch and a potentiometer that set the high voltage.
The HV setting may be measured from a test point with a DVM. The measured voltage in mV is
the set voltage in V. The last dynode may be thought of as a capacitor with a capacitance large
compared with the input capacitance of the CAEN 6720. The charge arrives at the last dynode
in a 40 ns time interval and we want to sample a small fraction of that charge with the digitizer.
Fig. ?? shows the equivalent circuit. We think of a current pulse arriving over 40 ns, charging the
two capacitors with a time constant of 1/R (C + C ′). Then the pulse ends, the switch opens, and
the input capacitance C discharges with time constant 1/RC. The digitizer records the voltage Vin
every 4 ns.

The pulse shape recorded by the digitizer may be modeled as,

0 t < t1

i (t) = A
(
1 − e−λ1(t−t1)

)
t1 < t < t2 (1)

A
(
1 − e−λ1(t2−t1)

)
e−λ2(t−t2) t2 < t.

The integral of the charge collected is given by,

Q = A (t2 − t1) +

(
A

λ2
− A

λ1

)(
1 − e−λ(t2−t1)

)
. (2)

1

C’ C

RS

i(t)

Vin

PMT 6720

Figure 1: Equivalent circuit for last dynode of PMT and input of CAEN 6720.

2

2 CAEN 6720 waveform digitizer operation and wavedump output

wavedump setups up the 6720 digitizer and, upon user command, begins data collection. wavedump
reads 1024 samples at 250 MHz, corresponding to a 4.1 µs sample window, and processes the re-
sults. wavedump setup is determined by a configuration file
/home/fisherp/projects/CAEN/wavedump-3.8.1/Setup/myWaveDump
that set the trigger threshold, readout frequency, data range, etc. In the current configuration, the
input signal from the pre-amp of the NaI crystal is -1 to 1 V into 50 Ω. This means each sample is
the current from the last dynode into 50 Ω integrated over 4 ns. The 6720 has 12 bit ADC, so one
channel is 48 µV or 38.4 fC. The total charge is the sum of all the readout channels.

The baseline of the 6720 is set at approximately channel 2048. Currently, wavedump uses the
difference between to largest and smallest of the 1024 readout bins as an estimator for the total
charge. This will be improved later. For each pulse wavedump estimates the total charge and bins
the result into a 4096 channel histogram. The histogram is written out to /tmp/Plotdata.txt
every second. The histogram accumulates until wavedump exits. PlotData.txt is an ASCII
file with two columns of numbers: the first is channel number and the second is accumulated
contents.

3 wavedump operation

4 Extraction of the charge integral from the recorded waveform

Fig. 2 shows a typical event collected from the NaI detector by the digitizer. The energy deposited
in the NaI crystal is proportional to the total charge flowing from the PMT, Q. We can estimate Q
from the waveform in three different ways.

1. Peak height - this has the advantage of being very simple and fast. However, resolution
suffers as only a single point is used for the estimate and there is no quality control on the
shape of the pulse.

2. Integral under the peak - in this case all the points (about 300) are used in the estimate, as
well as 150 points from before the trigger. This methods is nearly as fast as peak finding.
There is no quality control on the pulse shape.

3. Peak fit - in this case the entire pulse up to channel 450 use used on a six parameter fit to
Eq. 1 (the five parameters in Eq. 1 and the position of the baseline near channel 2048.) This
method gives a goodnes of fit parameter, as well as all six parameters of the pulse shape and
uses all the information available. Fitting is slow, 40 ms in root interpretive mode.

The different methods give different uncertainties. The variance of the baseline noise is around
2.7 counts2, Fig. ??. For a typical peak amplitude of 20 counts, the square root over the variance
gives a fractional uncertainty of 6.5%. This is on top of the the uncertainties of in the counting
statistics of the scintillation photons that determine the intrinsic resolution of the detector. Using
100 eV/photon, a quantum efficiency of 20%, and a geometric collection fraction of 25%, for 3
MeV energy deposition, we expect 1,500 photons. Using counting statistics alone, this would give
2.5% resolution.

3

h
Entries 24576
Underflow 2053
Overflow 0

 / ndf 2χ 1190 / 443
t1 0.1± 163.1
t2 0.5± 185.1
lambda1 0.0144± 0.3975
lambda2 0.00014± 0.01612
A 0.29±49.51 −
p5 0.1± 2052

200 400 600 800 10000

200

400

600

800

1000

1200

1400

1600

1800

2000

pdf/24.ps
h

Entries 25600
Underflow 2053
Overflow 0

 / ndf 2χ 5.531e+04 / 443
t1 0.0± 166.2
t2 0.0± 186.5
lambda1 0.0007± 0.3692
lambda2 0.00001± 0.01641
A 0.3±909 −
p5 0.1± 2052

pdf/24.ps

time (4 ns/bin)

Q
 (3

8.
4

fC
/c

ou
nt

) peak

Int

Figure 2: Waveform for a larger than usual pulse recorded by the CAEN 6720. The total integral
Q = −3701 ± 39 units (38.9 fC/unit) using the fit. Integration gives Q = −3669 ± 30 units.

4

2038 2040 2042 2044 2046 2048 2050 2052 2054 2056 2058
0

5

10

15

20

25

30

35

40

45
Entries 149

Underflow 0
Overflow 0

 / ndf 2χ 96.93 / 4
Constant 0.79± 46.94
Mean 0.0± 2052
Sigma 0.024± 1.299

Figure 3: Binning of first 150 time bins of baseline noise from a typical event. Fit is for a Gaussian.

5

For the integration routine runs over 300 bins, which gives an error on the charge uncertainty
of 28 counts for Q = 9000 counts, contributing 0.3%. For the fit, we use the expression in Eq. 2, the
uncertainties extracted from the fit, and the standard uncertainty relation,

σQ =

√(
∂Q

∂t1

)2

σ2t1 +

(
∂Q

∂t2

)2

σ2t2 +

(
∂Q

∂λ1

)2

σ2λ1 +

(
∂Q

∂λ2

)2

σ2λ2 +

(
∂Q

∂A

)2

σ2A+,

and get about the same uncertainty. However, the fit also gives a χ2 statistic tells us how good the
fit is and this may help remove noisy or overlapping events.

Fig. 4 shows the Q extraction performance for 10 minutes of data. For both the integration and
peak methods, the 208Tl 2614 keV line is clearly visible new Q = 9000 in the fit. In the expanded
plot, the maximum MIP energy lies around 90,000 or 35 MeV. This comes from a NaI density of
2.7 g/cm3, dE/dxmin = 1.3 MeV/g/cm2, and a typical path length of sqrt2 × 5 cm=7 cm. A fit of
the 2614 keV line gives a fractional resolution of 2.5%, consistent with expectation, Fig. 5.

5 Display program specifications

The display program has the following functions:

1. Read the histogram every 5s from /tmp/PlotData.txt. The exact time the histogram is
read out is not important, but it should be timestamped using time().

2. Record each histogram with it time stamp as a TH1F object in a root file.

3. Display each histogram as it is acquired in a continuously updating display.

4. Display difference histograms or other accumulated histograms as useful. All displays
should be in a single TCanvas.

5. Allow operator control of the display in real time using the kbhit() command.

The display program may be a root macro or standalone program. Eventually, it should also
launch wavedump. The following is an example of a one-shot program that reads PlotData.txt,
creates a TH1F and displays it. This can be run as a root macro, i.e.,

root [1] .x NaIDisplay.C

void NaIDisplay1()
{
Int_t debug=1;
if(debug!=0) printf("NaIDisplay1 - starting\n");

TGraph* g=new TGraph("/tmp/PlotData.txt");
auto nPoints=g->GetN();
printf("nPoints %d\n",nPoints);
TH1F* h=new TH1F("h","",nPoints,1.,4096.);
for(Int_t i=0;i<nPoints;++i){

double x,y;
g->GetPoint(i,x,y);
h->SetBinContent(i,y);

6

0 20 40 60 80 100 120 140

1

10

210

Peak value
h_peak

Entries 6000

Underflow 0

Overflow 148

Peak value

0 2 4 6 8 10 12 14

1

10

210

3
10

Integral
h_int

Entries 6000

Underflow 0

Overflow 133

Integral

0 2000 4000 6000 8000 10000 12000 14000

1

10

210

Fit Integral
h_fitint

Entries 6000

Underflow 0

Overflow 135

Fit Integral

0 20 40 60 80 100 120 140

3
10×

1

10

210

3
10

Fit Integral wide
h_fitint_wide

Entries 6000

Underflow 0

Overflow 5

Fit Integral wide

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

1400

Chi2
h_chi2

Entries 6000

Underflow 0

Overflow 138

Chi2 Chi2 vs. sigInt

0 20 40 60 80 100 120 140

3
10×0

200

400

600

800

1000

1200

1400

h_chi2_sigInt
Entries 6000
 0 99 3
 0 5889 9
 0 0 0

Chi2 vs. sigInt

Chi2 vs. Int

0 20 40 60 80 100 120 140

3
10×0

2000

4000

6000

8000

10000

12000

14000

h_chi2_Int
Entries 6000
 0 123 12
 0 5865 0

 0 0 0

Chi2 vs. Int Fit vs. Int

0 2000 4000 6000 8000 10000 12000 14000

Fit

0

2

4

6

8

10

12

14

16

18

20

In
t h_fit_int

Entries 6000
 0 0 124
 0 5865 11
 0 0 0

Fit vs. Int

Figure 4: Performance graphs for 10 min of live-time in ambient conditions.

7

Figure 5: Fit to 2614 keV line for 10 min of live-time.

8

}
if(debug!=0) printf("NaIDisplay1 - drawing\n");
TCanvas* myCan=new TCanvas("myCan","myCan");
myCan->SetLogy();
h->Rebin(2);
h->GetXaxis()->SetRange(1950,2049);
h->Draw("hist");

}

6 Improving Q extraction

The current version of wavedump uses peak determination as an estimator for Q. The section
above indicates this will lead for a 5% degradation of resolution, making the beam energy deter-
mination more difficult. From the argument above, it looks like integration under the peak with
a baseline estimate will give adequate results. To move forward quickly, we should replace the
peak finder in wavedump with a call the a routine with a switch that will allow peak finding, inte-
gration, and fitting, with integration at the default. Time permitting, testing to see if there is any
advantage to the peak fitting can take place, but as a second priority to ensuring the system works
properly with the integration.

The function call should look like,

Int_t WaveProcess(char* switch, Int_t* array, Float_t *Q, Float_t *sigmaQ, Float_t *chi2)

switch = "peak", "int", or "fit"

*Q = total charge collected (in units of 38.4 fC except for "peak" option)

*sigmaQ = uncertainty on *Q

*chi2 = goodness of fit statistic ("fit" only)

WaveProcess should return 1 is the results can be used, 0 if not.

Updating the histogram takes place in WaveDump.c starting at line 2097.

A test program is in WaveFit.Cwhich reads recorded data from the CAEN 6720 in wave0.txt.
There are 3 M events stored here. The program runs interactively with root, ie.,

root [0] .L WaveFit.C++
root [1] fitfunc()
root [2] WaveFit(10000,0)

will process 10,000 events, make histograms that will be in root/WaveForm.root and plots in
pdf/WaveForm.pdf. The plots shown in this memo were produced from WaveForm.

The immediate task is to extract WaveProcess and interface it to wavedump for Q extraction.
other things that can be done are:

1. Understand if being able to cut events with poor fits improves performance.

2. Is fitting fast enough with wavedump?

9

