Memorandum

To: All Concerned
From: Peter Fisher
Subject: Cross section enhancement - classical somerfeld effect
Date: January 19, 2017

An object of mass m is incident on and far from an object of mass M with impact parameter b. We know its velocity v and want to find its distance of closest approach δ, Fig. 1. Angular energy

Figure 1: Trajectory for an unbound non-relativistic Kepler orbit.
conservation gives

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}=\frac{1}{2} m v^{\prime 2}-\frac{G M m}{\delta} \tag{1}
\end{equation*}
$$

and energy conservation says,

$$
\begin{equation*}
L=m v b=m v^{\prime} \delta \tag{2}
\end{equation*}
$$

Using

$$
r_{s}=\frac{2 G M}{c^{2}}
$$

then, we want to find b in terms of δ. Putting the last three equations together gives,

$$
\begin{align*}
\delta^{2} \beta^{2} & =\beta^{2} b^{2}-r_{s} \delta \rightarrow \tag{3}\\
b & =\delta \sqrt{1+\frac{r_{s}}{\delta \beta^{2}}} . \tag{4}
\end{align*}
$$

Two limits:

$$
\begin{align*}
& \frac{r_{s}}{\delta \beta^{2}} \gg 1 \quad \rightarrow b \sim \frac{\sqrt{\delta r_{s}}}{\beta} \tag{5}\\
& \frac{r_{s}}{\delta \beta^{2}} \ll 1 \quad \rightarrow b \sim \delta\left(1+\frac{r_{s}}{2 \delta \beta^{2}}\right) \tag{6}
\end{align*}
$$

Example is DM particle hitting the Sun; $r_{s}=3,000 \mathrm{~m}, \beta=10^{-3}, \delta=7 \times 10^{8} \mathrm{~m}$, then $r_{s} / \delta \beta^{2}=4.2$, so $b=2 \delta$. At the DCA, $\beta^{\prime}=\delta \beta / b=2 \beta$.

We can also start with the relativistic orbit equation,

$$
\begin{equation*}
\left(\frac{d r}{d \tau}\right)^{2}=\frac{E^{2}}{m^{2} c^{2}}-\left(1-\frac{r_{s}}{r}\right)\left(c^{2}+\frac{h^{2}}{r^{2}}\right) \tag{7}
\end{equation*}
$$

with $h=L / m=v b$. At the distance of closest approach (DCA) $r=\delta, d r / d \tau=0$, which gives,

$$
0=\gamma^{2}-\left(1-\frac{r_{2}}{\delta}\right)\left(1+\frac{b \beta^{2}}{\delta^{2}}\right)
$$

Solving for b :

$$
\begin{align*}
b & =\frac{\delta}{\beta} \sqrt{\frac{\gamma^{2}}{1-r_{s} / \delta}} \tag{8}\\
& \sim \frac{\delta}{\beta} \sqrt{\beta^{2}+\frac{r_{s}}{\delta}} \tag{9}
\end{align*}
$$

as in the non-relativistic case.

