MEMORANDUM

To: Yorem Soreq From: Peter Fisher Subject: Nuclear selection rules in $(N, Z)^* \rightarrow (N, Z) + e^+ + e^-$

Date: January 29, 2017

Equation references are to Tomoda, 1991.

From Eq. 3.44, $\alpha \neq \beta$ for the allowed process $(N, Z)^* \rightarrow (N, Z) + e^+ + e^-$. This is equivalent to introducing a right handed current for a Majorana neutrino with $\lambda \neq 0$, $\kappa = \eta = 0$ in Eq. 3.40.

Following along, in Eq. 3.50, $X_1 = X_5 = X_6 = 0$. The resulting nuclear currents are given in Table 4, reproduced below. They are of the for 1 and $\sigma_1 \cdot \sigma_2$. The σ 's operate on the quark spins, so the nuclear currents allow $\Delta J=0,1$, or 2 in the nuclear angular momentum. This seems to preclude ${}^{178m^2}\text{Hf} \rightarrow {}^{178}\text{Hf} + e^+ + e^-$ unless there is some mixing between angular momentum states.

Table 4. Factor decomposition of the $0^+ \rightarrow 0^+ 0\nu\beta\beta$ decay amplitudes into various contributions. Only the relative magnitudes are given for each column. Here ω and k are the energy and the momentum of the virtual light neutrinos, $k = |k| \approx \omega$, and ϵ_i the energies of the emitted electrons. The unit vectors \hat{r}_{12} and \hat{r}_{+12} , which originate from the momentum k of the neutrino (\hat{r}_{12}) and the electron P-wave (\hat{r}_{12} and \hat{r}_{+12}), are included in the contributions of the nuclear currents in order to show their way of coupling to σ and D. The common factor $\tau_1^+ \tau_2^+$ has been omitted in the last column. See text for the definition of S_i and P_i .

Type of matrix element	(a) Neutrino propagator	(b) Electron wavefunctions	(c) Nuclear currents
$\frac{(M_{\rm GT}^{(0\nu)},\chi_{\rm F})}{X_1}$	$\langle m_{ u} angle / \omega^2$ $\langle \langle m_{ u}^{-1} angle angle$	$\sqrt{2}S_1S_2$	$g_{\rm V}^2 - g_{\rm A}^2 \sigma_1 \cdot \sigma_2$
X_3 $(\tilde{\chi}_{ m GT}, \tilde{\chi}_{ m F})$	$\langle \lambda \rangle (\epsilon_1 - \epsilon_2) / 2 \omega^2$ $\langle \eta \rangle (\epsilon_1 - \epsilon_2) / 2 \omega^2$	$2S_1S_2$	$g_{\mathrm{V}}^2 \mp g_{\mathrm{A}}^2 \sigma_1 \cdot \sigma_2$
$X_4~(\chi_{\rm GT}',\chi_{\rm F}',\chi_{\rm T}')$	$\langle \lambda \rangle k / \omega^2$ $\langle \eta \rangle k / \omega^2$	$(S_1P_2 - P_1S_2)r_{12}/R$	$g_{\mathrm{V}}^2 \pm g_{\mathrm{A}}^2 (\frac{1}{3}\sigma_1 \cdot \sigma_2 - 2S_{12})$
$X_5(\chi'_{\rm P})$	$\langle \eta \rangle k / \omega^2$	$(S_1P_2 + P_1S_2)r_{+12}/R$	$g_{\vee}g_{A}(\sigma_1-\sigma_2)\cdot(\hat{r}_{12}\times\hat{r}_{+12})$
$X_{6}(\chi'_{\rm R})$	$\langle \eta \rangle k / \omega^2$	$2S_1S_2$	$g_{\forall}g_{A}\hat{\tau}_{12}\cdot(\sigma_{1}\times D_{2}-\sigma_{2}\times D_{1})$