MEMORANDUM

To: Mark Longtin
From: Peter Fisher
Subject: Procedure for computing quadratic equations ont he Curta
Date: Friday, May 13, 2016

The Curta is designed for addition of numbers. Subtraction is easy, multiplication becomes difficult and division is quit difficult from an operation point of view. An interesting question is, "How can you use the Curta to compute more complicated quantities, like $\sqrt{x}, \cos x, \ln x$ and so on?" After suitable scaling so x is small, we can evaluate $f(x)=u+t x+s x^{2}$

Two digits of precision are sufficient for most applications and we can relate a quadratic expression to an incrementing sum

$$
\begin{align*}
c+\sum_{i=1}^{n} a i+b & =(a n+b)+\ldots+(a+b)=\frac{a n^{2}}{2}+\frac{a n}{2}+b n=n^{2}\left(\frac{a}{2}\right)+n\left(\frac{a}{2}+b\right)+c \tag{1}\\
& =s n^{2}+t n+u \tag{2}
\end{align*}
$$

which leads to

$$
\begin{align*}
a & =2 s \tag{3}\\
b & =t-s \tag{4}\\
c & =c \tag{5}
\end{align*}
$$

We have to shift the decimal point since the Curta operates on integers. For two digit precision, $k=\lfloor 100 x\rfloor$ and $10000 f(x)=10000 u+100 t k+s k^{2}$ and

$$
\begin{align*}
a & =2 s \tag{6}\\
b & =100 t-s \tag{7}\\
c & =10000 u \tag{8}
\end{align*}
$$

If $f(x)=u+t x^{2}+s x^{4}$, then $100000000 f(x)=100000000 u+10000 t k^{2}+s k^{4}$.
What we really want to do is find the digits $x_{0} \ldots x_{m}$ of $k=x_{0}+10 x_{1}+\ldots+10^{m} x_{m}$. To be concrete, we take $m=5$, six digit numbers. Then,

$$
\begin{align*}
\sum_{i=1}^{k} a i+b & =\sum_{1}^{x_{5} 10^{5}} a i+b+\sum_{x_{5} 10^{5}+1}^{x_{5} 10^{5}+x_{4} 10^{4}} a i+b+\sum_{x_{5} 10^{5}+x_{4} 10^{4}+1}^{x_{5} 10^{5}+x_{4} 10^{4}+x_{3} 10^{3}} a i+b \tag{9}\\
& +\sum_{x_{5} 10^{5}+x_{4} 10^{4}+x_{3} 10^{3}+x_{2} 10^{2}} a i+b+\ldots \tag{10}\\
& =r_{5}+r_{4}+r+3+r+2+r_{1}+r_{0} \tag{11}
\end{align*}
$$

The individual sums may be computed in the usual way in a straightforward, but tedious process. The result is

$$
\left.\begin{array}{rl}
r_{5}= & 5000050000 a+100000 b \\
& \text { in steps of } 10000000000 a x_{5}-1 \text { times } \\
r_{4}= & 50005000 a+10000 b \\
& \text { in steps of } 100000000 a x_{4}-1 \text { times } \\
r_{3}= & 500500 a+1000 b+10000000 a x_{4}+100000000 a x_{5} \\
& \text { in steps of } 1000000 a x_{3}-1 \text { times } \\
r_{2}= & 5050 a+100 b+100000 a x_{3}+1000000 a x_{4}+10000000 a x_{5} \\
& \text { in steps of } 10000 a x_{2}-1 \text { times }
\end{array}\right\}
$$

