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Fig. 1 shows a PARTICLE frame containing electromagnetic radiation of frequency w’ and wave
number k = +w'#. There is a set of PARTICLE frames, each corresponding to a different time. In
each PARTICLE frame, the particle is at rest, v’ = 0, and accelerating with d,//dt’ = a. The time
dependent velocity v for the Lorentz transformation between the two frames is chosen so that the
particle remains at rest and accelerates with a.

Our first task is to find 3, (¢). Next, we will find w and E in the LAB frame. Finally, we Fourier
transform E and find that the power spectrum follows a black body spectrum and compute the
temperature 7'

1. The velocity of the particle in the LAB frame is
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In any PARTICLE frame, 8, = 0 and df3,/ /dt’ = a. We need to find how §,evolves with time
as a function of acceleration and time only, which means finding dj3, /dt’ and setting it equal
to df,/dt’ to ensure the particle remains at rest in all PARTICLE frames.
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The last step comes from applying the conditions on the particle in the PARTICLE frame. ¢’
is the proper time oft the PARTICLE frame.

2. The requirement that the particle remain at rest and accelerate at a in all PARTICLE frames
gives
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We fix C by saying that the particle “turns around”, 3, = 0, at#’ = 0, so C = 1. Solving Eq. 7
gives (3, = tanh at’. Also, y, = coshat’ and 3,7, = sinhat'.

. Next, we transform the electromagnetic wave from the PARTICLE frame to the LAB frame,
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The positive solutions correspond to photons moving in the 2/ direction and the negative
solutions correspond to photons moving in the —z’ direction. At each time ¢, the PARTICLE
and LAB frames are connected by a Lorentz transformation with 3, (¢), a photon in the
PARTICLE frame moving in the 2’ also moves in the % direction in the LAB frame, and
SO on.

. The electric field is E o ¢*(*') and the phase is
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The positive solution converges, the negative does not. For the positive solution, we have

. The power density is proportional to the norm of the Fourier transform of the electric field
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Carrying out the integral is straight-forward, but tedious: substitute y = exp at’ then use
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Then
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Squaring and using
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Comparing with the black body spectrum gives T' = ha/27kp.

1 Some observations and questions

This derivation of the black body spectrum resulting from a single, arbitrary frequency in an accel-
erating frame seems miraculous: how can just special relativity and electricity develop the black
body spectrum? In fact, using £ = hw brings in quantum mechanics as this resulted from study
of the black body spectrum to begin with.

The dependence on ' disappears in Eq. 17. The resulting spectrum should be independent of
frequency since we could start from a third frame moving at constant velocity with respect to the
PARTICLE frame. The net effect of doing this is changing the turn-around time, which in turn
changes the value of the integration constant C' and /3, = tanha (¢’ — t},,,), ultimately given a
black body spectrum in the LAB frame.

What we have shown is that any radiation in an accelerating from appears as a black body
spectrum in the LAB frame, a different statement than saying an accelerating object radiates a
black body spectrum. The “object” that appears in Fig. 1 serves no purpose, the EM radiation
gives us the black body spectrum.



