MEMORANDUM

To: Paul Dimotakis

From: Peter Fisher

Subject: Orbit calculations between two points on Earth

Date: April 3, 2019

The problem is to find the orbit equation passing through two points on the Earth's surface. We know the latitude and longitude of each point. There is a vector pointing from of the Earth to each:

 $\vec{x}_i = (R_E \cos \phi_i \sin \theta_i, R_E \sin \phi_2 \sin \theta_i, R_E \cos \theta_i).$

The chord length from 1 to 2 is $l = |\vec{x}_1 - \vec{x}_2|$. The chord defines an isosceles triangle with $\vec{x_1}$ and \vec{x}_2 . Bisecting this triangle gives two right triangles with hypotenuse R_E , base l/2, and angle $\sin \xi/2 = l/2R_E$. The area of the triangle is,

Define $\vec{A} = \vec{x}_1 \times \vec{x}_2$. The vector $\vec{h} = \vec{A} \times \vec{x}_1$ points in the direction of the Great circle from 1 to 2 and the vector $\vec{k} = \hat{z} \times \vec{x}_1$ points East, so $\vec{n} = \vec{x}_1 \times \vec{k}$ points North, and the heading is $\psi = \cos^{-1} \vec{n} \cdot \vec{h} / |n| |h|$.

The missile's flight will follow a ellipse with one focus at the center of the Earth and the apogee of the missile's flight will be the semi-major axis of the missile's elliptical orbit. The orbit equation is p

$$r = \frac{p}{1 + \epsilon \cos \theta}$$

with $p = H^2/\mu$, $H = r^2/\dot{\theta}$, and $\mu = G(m_E + m_r) \sim Gm_E = 3.896 \times 10^{14} \text{ m}^3/\text{s}$. At the apogee of the missile's flight, $\theta = 0$ and $r = R_E + a = p/1 - \epsilon$ and at Points 1 and 2, $r = R_E = p/1 + \epsilon \cos \pi - \xi/2$ where *a* is the altitude of the missile above the Earth's surface at apogee. Solving gives,

$$\epsilon = \frac{a}{a + R\left(1 - \cos\xi\right)} \tag{1}$$

$$p = -\frac{R(a+R)(1-\cos\xi)}{a+R(1-\cos\xi)}$$
(2)

so we choose *a* and find *p* and ϵ . The launch angle is $dr/d\theta$ at Point 1,

$$\frac{dr}{d\theta} = -\frac{p\epsilon\sin\theta}{\left(1+\epsilon\cos\theta\right)^2} = -\frac{r^2\epsilon\sin\theta}{p}$$

and at Point 1,

$$\tan \theta_l = \frac{R_E \epsilon}{p} \sin \xi.$$

City	Distance	Heading	Launch	V_{BO}	Flight time
	(km)	(deg.)	(deg.)	(km/s)	(s)
Washington DC	11,082	17.83 E	20.04	7.362	4,089
New York City	10,969	14.94 E	20.55	7.346	4,083
Boston	10,848	12.40 E	20.49	7.329	4,067
Chicago	10,444	24.262 E	20.49	7.268	4,011
San Francisco	9,027	47.98 E	24.62	7.023	3,852
Los Angeles	9 <i>,</i> 573	48.52 E	23.57	7.125	3,917
Moscow	6,432	41.67 W	30.66	6.39	3,598
Berlin	7,959	36.44 W	27.31	6.79	3,738
London	8,691	30.06 W	26.91	6.96	3,820
Tehran	6,407	68.05 W	31.30	6.379	3,603

Table 1: Launch information for representative cities.

As a worked example, take Point 1 to be Pyongyang ($39^{\circ}15'38.74''$ N, $125^{\circ}51'43.33''$ E) and Washington DC ($38^{\circ}54'25.89''$ N, $77^{\circ}2'12.73''$ W). From the equation for *l* above, l = 8, 205 km, $\xi = 1.739$, and the distance along the Earth's surface is 11,081 km. The heading is 17.83°

Fig. 1 shows the initial velocity and apogee as functions of launch angle. Burnout velocity, V_{bo} is a key constraint for missiles and shows a minimum at 22°, which gives an apogee altitude of 1,100 km. Fig. 2 shows a trajectory over the Earth's surface. Table 1 shows trajectory information for representative cities.

Another application is given by the flight of the Hwasong-15 missile on Nov. 28, 2017. The Hwasong-15 travelled 950 km toward Japan and achieved an apogee of 4,475 km [1]. In the flat Earth approximation,

$$R = -\frac{2v_o^2 \sin 2\theta_l}{g} \tag{3}$$

$$y_{apogee} = \frac{v_o^2 \sin^2 \theta_l}{g} \tag{4}$$

and solving these gives $v_o = 6.636$ km/s and $\theta_l = 86.80^{\circ}$. Using the orbit equations given above, $v_o = 7.196$ km/s and $\theta_l = 84.56^{\circ}$. This points out the need to use the orbit equations even for ranges of a few hundred kilometers.

References

[1] https://en.wikipedia.org/wiki/Hwasong-15#cite_note-reuters.com-9



Figure 1: Upper panel shows V_{bo} as a function of launch angle for a Pyongyang to Washington DC trajectory. Lower panel shows altitude at apogee.

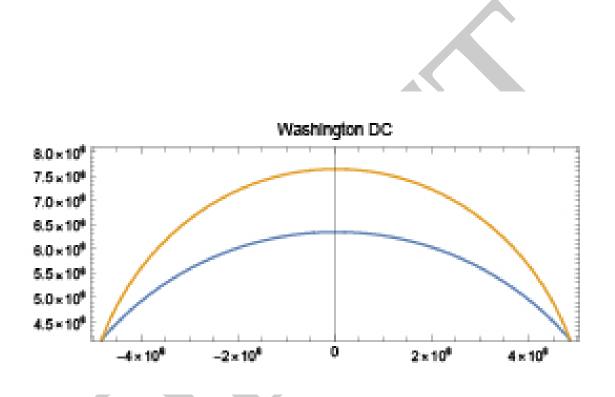


Figure 2: Minimum V_{bo} trajectory over the Earth's surface from Pyongyang to Washington DC. Dimensions are in meters.