
scattered photon #1, respectively); similariy for photon #2. Using this fact and the symmetry of the
2-photon final state, prove that the coincidence rate for detection of the two scattered photons is
proportional to 13 -8 cos^ 9. In deriving this result it is essential to recognize that the scattering
process (photon #1 -^ photon # 1') is incoherent with respect to the scattering process (photon #2
-^ photon # 2'). Why is this so?

12. In this problem we consider a thought experiment proposed only very recently by L. Hardy
(1993). It illustrates the peculiar and counter-intuitive nature of entangled states in a different and in
some ways simpler manner than the usual Bell's inequality experiments, which employ atomic

cascades and 2-photon polarization correlations. The present thought experiment makes use of a

source S and two detectors Dl and Dr (L,R for left, right respectively; see the figure).
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Each detector has two modes 1.2 determined by the position of a switch Kl.R- Each detector is
equipped with a light that can flash either green or red. An experimental trial commences when the
observer presses a button that launches a pair of correlated particles from SOUrce S; one particlegoes to the left and the other to the right. After they have been emitted from the source but beforethey airive at their respective detectors, the observer flips one coin to determine the position of Kt,and another coin to determine the position of Kj^. The arrival of a particle at Dl is indicated by theflashing of the green or red light there; similarly for the arrival of the other particle at Dr. Theoutcome of a given trial is specified by giving the positions of the two switches and the color ofhghts which flashed; for example (1G2R) signifies that K^ was in position 1 and Dt flashedgreen, while Kj> was in position 2 and Dr flashed red. ^
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The observer repeats the experiment, writing down the outcome for each trial, and finds the
following results after many trials:

i) When both switches are in position 1, both lights never flash red: (IRIR) never occurs.
ii) When the switches are in different positions, both lights never flash green:

(1G2G) and (2G1G) never occur.
iii) In a non-zero fraction of the trials when both switches are in position 2, the lights both

flash green: (2G2G) sometimes occurs.
It is tempting to try to make the following (classical) analysis: Something in the common

origin of the particles must be responsible for the observed correlations. Since the switches Kj^ r
are not set until after the particles leave the source, whatever features the particles possess cannot
depend on how these switches are set. Furthermore we can safely assume that Dl can only
respond to the particle on the left, while Dj^ can only respond to the particle on the right. Then,
since any trial could end up as a 12 or a 21 trial, whenever one of the particles is of a variety to
allow a type 2 detector to flash green, the other particle must be of a variety to make a type 1
detector flash red. (This follows from ii above). Then in any of the occasional 22 trials where both
detectors flashed green, both particles must have been of the variety to make a type 1 detector flash
red. In other words, had both switches been set to position 1 in these trials, the outcome IRIR
would have been observed. However IRIR is never observed! Thus the foregoing classical
argument leads to a contradiction.

Nevertheless it is possible in principle to set up such an experiment and to get the results
given, but we must use quantum mechanics to describe the system of particles. Suppose that when
a switch K is set to position 1 the outcome "green" corresponds to absorption of a particle of spin
1/2 with spin up along the z axis, whereas the outcome red corresponds to spin down:

,10>=(1), ,.R>=(9 (12.1)

Since we never obtain the outcome (IRIR) we can assume that the quantum state of the two
particles laimched from the source is of the form:

lr()>=allRlG> + pIlGlR>+YllGlG> . (12.2)

where ilR 1G> refers to left particle with spin down, right particle with spin up, and so forth, and
a,P,Y are constants. We may assume that lxi3>  is normalized to unity, so that

.,«_   /w
^.^-^   <: i <=s=^<::i>   fE.^rxcz   <r^<:73^i <:^:>

il l-nviiil'lllH...... »'•

and the states iiG2G> and

;':  4H|»(,;|ll, llU^
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I2G1G> are thus orthogonal to iij^, it follows that:

a(2GllR) + Y^GIlG)=0

^   P^GI 1R) + y(2GI1C^=0
(12.3)

b) (20) It must be possible to express I2G> as a linear combination of the states I1G>, I1R>; and

I2R> must be an orthogonal linear combination:

I2G> = q^'^ll G> + i/T^ II R>
I2R> =-/r=q [1G> + ql'2 |1R>

where 0<q<l. Show that, since outcome (2G2G) sometimes occurs, and therefore l<2G2GI'«iJ>r =

p ?s 0, it follows that:

(12.4)

p^f(l-q)^
1^^

(12.5)

c) (30) Show that when p is maximized in (12.5) the probabilities of the various outcomes are

given by the following table, where z= i(/5-l)   :

IGIR z2

IRIG z2

IRIR 0

1G2G 0

1G2R z

1R2G 2?

1R2R z4

2G1G 0

2G1R z3

2R1G z

2R1R z4

2G2G z5.p
2G2R ^  ... ͣͣ,
2R2G Z4

2R2R z

ll
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O'Ao'B^A-B + ia'AxB (8.2)

Identities (8.1) and (8.2) are very important and will be used repeatedly in 221A,B.

9.(20) Later in the course we shall discuss the properties of the "angular momentum" operators
Jx, Jy Jz-1" ""its where h=l, these satisfy the commutation relations:

[Jx,Jy] = iJz,   yy,J2J=iJx,   [Jz.Jy]=iJx
Let a be a real parameter. Show that

e^«J.Jyei«J^ = aJy+hJ^

where a, b are two real quantities. Find the latter in terms of a.

lO.(lS) Let A(x) be an operator that depends on a continuous parameter x and let dA/dx be the
derivative with respect to x. Derive the following operator identity:

where aO{B} = B, a1{B} = [A,B], A^fB} = [A,[A,B]], etc.

11. An electron and a positron can form a bound system called positronium. In the ground ^Sq
state, a positronium atom decays by annihilation of e"^ and e' into two photons with equal and
opposite linear momentum in the positronium rest frame. Also, in this ground state, the
positronium atom has zero total angular momentum; hence the two photons carry off zero total
angular momenmm. Furthermore, as will be shown in 221B, the parity of the positronium ground
state is odd, which means that imder inversion of spatial coordinates the state vector changes sign.
Also, parity is conserved in the annihilation process, so the parity of the two-photon final state is
odd.

a) (10) Consider a photon emitted along +z, and another emitted along -z. Show that the two-
photon final state must be of the form:
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