
ABSORPTION COEFFICIENTS OF H NEGATI VE ION

Geltman's maximum of f~.~ is more accurate than our
corresponding maximum given by Eq. (11).

In Table III we have a comparison of our bound-
state function po, Eq. (6), with the corresponding
function of Geltman. Table III shows that crudely the
results are similar. Wee see that the above given con-
sideration gives just the value of the electron afFinity
of the hydrogen atom given by Henrich, while the
analytical formula obtained for the total continuous
absorption coe%cient is very simple and its degree of
accuracy in comparison with Geltman's results is a
good one.

Geltrnan has simplified extensively the calculation of
Chandrasekhar by adopting the cut-oR Coulomb po-
tential but the solutions obtained for the discrete and

continuous spectrum do not give an analytical expres-
sion for the total continuous absorption coefficient.

Concerning Eq. (1) we must make it clear that this
equation implies the use of a special form for the bound
and continuum two-electron wave functions, as well as
the dipole length form of the matrix element. Since
the continuum functions used in this paper do not
satisfy the Schrodinger equation with V(r) given. by
Eq. (4), different results will be obtained with the
dipole velocity and acceleration forms of the matrix
element. A check on the self-consistency of this calcu-
lation would be the spread in results with all three
forms of the dipole matrix element. The other two
could also be obtained analytically without much
trouble.
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The theory of beta-decay processes in which an electron is created in a bound atomic state is developed
in the allowed approximation. The correlations and total decay rate are calculated with the renormalized
V —A theory and the results are valid for atoms of arbitrary electronic configuration. The relative prob-
ability of bound-state to continuum-state decay is shown to be independent of nuclear matrix elements;
some bound-state decay rates are presented that were calculated by making use of this fact. The possibility
of experimentally detecting bound-state decay is also briefly examined. The beta decay of nuclei in stellar
interiors is discussed and a number of examples are presented for which bound-state decay is more likely
than continuum-state decay under the conditions that obtain in stellar interiors.

I. INTRODUCTION

~ 'HE usual theory of beta decay assumes that the
transformation of a neutron into a proton is

accompanied by the creation, in continuum states, of
an electron and an antineutrino. This assumption
ignores decays in which an electron is created in a
previously unoccupied bound atomic state.

%e shall develop, in the allowed approximation, the
theory of the usually ignored decays in which a neutron
transforms into a proton, an antineutrino is produced
in a free state, and an electron is created in a bound
atomic state. ' It is important to realize that the bound-
state decay process does not take place through the
capture into an atomic orbit of an electron initially
created in a continuum state; the direct creation of an
electron in a bound state is more probable than the
capture process.

The relative frequency of bound-state to continuum-
state decays can be estimated with a phase-space
argument that does not depend on the formal theory of

* Supported by the National Science Foundation.
'In terrestrial experiments, the daughter atoms are almost

always neutral and hence difficult to detect.

weak interactions. The phase-space volume available
for continuum state decays is represented by the
function f(Z, Wo) s where the dependence on Z indicates
that the Coulomb correction has been included. For
bound-state decays, the analogous corrected phase space
volume is the square of the neutrino's momentum times
the square of the modulus of the electron's wave func-
tion evaluated at the nuclear surface. The relative
frequency of bound-state to continuum-state decays is
approximately equal to the ratio of the phase-space
volumes when these volumes are corrected for the
electron density at the nuclear surface. Thus the relative
frequency of bound-state to continuum-state decays is

r,/f, -q&
~
e(Z) ~'/f(Z, W,)

(Wo —1)'(nZ)'/e'f (Z,Wo).

This ratio depends sensitively on the nuclear energy
release, t/t/0, the atomic number, Z, of the daughter
nucleus; and the principal quantum number, e, of the
lowest unoccupied atomic orbit.

The possibility of bound-state decays was 6rst

'We use here units in which h=m=c=1. The function f is
most familiar in the combination log ft.
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pointed out by Daudel et a/. ,
' in 1947. They examined,

with the original Fermi (vector) theory, the prob-
ability of creating a,n electron in the K shell and
suggested that bound-state decay would be most
important in the stars. Their work properly applies
only to completely ionized atoms. 4 The theory of
Daudel et a/. was used by Sherk' to evaluate the bound-
state decay probability for tritium and recently
Galzenati et ul. ' have calculated the bound-state decay
rate for the neutron.

The present treatment applies to atoms of arbitrary
electronic configuration and includes the possibility of
decay into excited states of the final atom. We use, in
Sec. II, the renormalized V—A theory to determine the
various correlations and the total decay rate. We
present, in Sec. III, some simple examples and examine
the possibility of detecting bound-state decays. In Sec.
IV, we discuss the beta decay of nuclei in stellar in-
teriors and show that for some nuclei bound-state decay
is more likely than continuum-state decay under the
conditions that obtain in stellar interiors.

where a~~ and a,~ create electrons in bound and con-
tinuum states, respectively. In the usual theory of
beta decay, the four-component spinors Q, are chosen
to be continuum eigenfunctions of the Dirac Hamil-
tonian for an electron in the Coulomb 6eld of a nucleus
of charge Z.~ The necessity for including the bound-state
operators in (3) becomes clear when the incompleteness
of the continuum Coulomb eigenfunctions is considered.

H the bound-state decay rate is calculated in the
usual way, one must evaluate

(4)

There will in general be an infinite number of non-
vanishing terms in this summation due to the lack of
orthogonality between the eigenfunctions of the initial
and final Hamiltonians. ' This difFiculty can be avoided
by expanding the initial electron state in terms of
eigenstates of the final Hamiltonian. The bound-state
decay rate can then be written

II. GENERAL THEORY

We consider an initial state consisting of nucleus
with charge Z—1 surrounded by X atomic electrons,
and represent this state by the vector

We make no restriction on the form of the repre-
sentative of this state vector; the electron and nuclear
states will be specified by the two sets of quantum
numbers 7 and k, respectively. The 6nal electron states
will be described by a complete set of eigenstates of an
appropriate Hamiltonian, which, in practice, will usually
be the Dirac Hamiltonian with a nuclear field Ze'/r. —
The final states of the system will be represented by

i f)=
i Z, /+1, y'; r; k'),

where P speci6es the properties of the antineutrino that
is created.

The weak interaction producing the decay is assumed
to be

X(Z, N, ~'"
i
Z 1, Ã, ~)—

X(Z, X+1,y', r; 0'
i H„j Z, X, y")*

x(z, @+1,&';.;I'~a„~z, x, 7-"')

xb(E(y"; k) —E(7'; r; k')). (5)

The asterisk on the summation over y" and p"' indi-
cates that only those states for which

E(y"'; k) =E(y";k)

are to be included.
It will usually be convenient to describe the final

electron states by the complete set of Slater deter-
minants (rank X+1) formed from the one-particle
solutions of the Dirac equation with an external
Coulomb field —Ze'/r. With this choice of final Hamil-
tonian and basis vectors, the cross terms in (5) arise
from the energy degeneracy of the one-electron Dirac
eigenfunctions with respect to the spin-orbit quantum
number'

fol' l= j+2

where

We write
&=CA/Cv.

P.=Pi, ait r/i++, a,tp, +positron operators,

'R. Daudel, M. Jean, and M. Lecoin, J. phys. radium 8, 238
(1947); Compt. rend. 225, 290 (1948); R. Daudel, P. Benoiat,
R. Jacques, and M. Jean, ibid. 224, 1427 (1947),

4 See Secs. II and III for a discussion of this point.
5P. M. Sherk, Phys. Rev. 75, 789 (1.949).
'E. Galzenati, M. Marinaro, and S. Okubu, Nuovo cimento

15, 934 (1960).

In Eq. (7), / is the orbital angular momentum associated
with the large component of the Dirac spinor. We make
the iusual assumptions of allowed beta 'decay: (1),II'he
leptonic current is evaluated at the nuclear surface;

~ In order to include screening corrections, an average field due
to the atomic electrons is sometimes used. See J. R. Reitz, Phys.
Rev. 77, 10 (1950) and references cited therein.

'One can show that this lack of orthogonality causes no com-
plications in the pure continuum-state theory of beta decay.

M. E. Rose, Relativistic Electron Theory (John Wiley R Sons,
Inc. New York, 1961),p. 158.
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and (2) the nucleons are treated nonrelativistically.
Inserting the definitions of P, and H in Eq. (5), the
evaluation of the decay rate can be carried out in the
usual way. We obtain:

(nZ)'(mc)' t Wo

Ss'Vc E mc' )
xdn, (z, IiI, ~"Iz 1, x, —~)'(z, Ilr, &"'Iz—1, x, &)

( b & too')
XI 1+

W, —mco& ~Z )
t Mq ~M' ', I(I+—1-)

~xqt, „„,(z) ~+I —Is+I
~ I ) & I(2I—1) )

X (1+y )y, ,,"(&), (&)

where b=binding energy of created electron, I=unit
vector in the direction of the initial nuclear spin,
&=projection of the initial nuclear spin, m=mass of
the electron, R=nuclear radius, H/'0=nuclear energy
release, and"

~=Sr,r (1)'(1—n y)+x'(1+an q),

8=x'(M, )(o)'(e+ j) I+2or, r x(1)(o)

X (I/I+1)i(o —j) I, (10)

C=x'(o)oA(3q Irr I qn)—
The spinor wave function g~ ~ represents the electron
that must be added to

I
Z, 1V, y') in order to form the

st:ate Iz, X+1,p'); the value of @(R) is given in the
appendix. The quantities (Me) and A are the usual
parameters that occur in the literature; they are also
defined in the Appendix. The binding energy 6 is
retained in Eq. (8) because it is important for heavy
completely ionized atoms which can exist in stellar
interiors.

If we choose the Dirac Coulomb Hamiltonian as the
zeroth-order final-state Hamiltonian, the only inter-
ference terms that survive the transition from Eq. (5)
to Eq. (8) are terms in which &" and p"' differ only by
the sign of ~ for the created electron. This interference
contribution has little practical effect, since for y"~y"'
the expression

pM q pM' ——',I(I+1)ye, .,-'W) ~+I —Ill+I
I I ) ( I(2I 1) )—

x (1+&,)4, ,, -(~) (»)
'0 We use the de6nition of reduced matrix elements that has

been suggested by E. J. Konopinski:
tI'M'I S~„,t I IM) = tI'M'Jm

I
IM)(Sg).

This deGnition simpli6es certain formulae in the theory of beta-
&0 1

decay. In the spinor matrix element (8), y, is —I;it(1 0
contributes only if a"' is different from sc", in which case the one
in (1+ps) does not contribute.

is pure imaginary. " By correctly choosing the phases
of the basis vectors, the main contribution of the inter-
ference terms can be shown to be zero.

The usual allowed selection rules are manifest in
Eqs. (8) and (10) and the correlation coefficients have
a familiar form. For initially unpolarized nuclei, only
the term involving A is present. The total bound-state
decay rate for experiments in which no attempt is made
to observe the direction of the nuclear recoil and in
which the nuclei are initially unoriented is

where

Gr'(nz)'(mc)' t Wo
I'e=

I

—1
I gZ,

2x'hrc E mc' )
f =~, , (1)+*(),

(12)

z= p p* (z, iv, q"
I
z 1, x,—~)*

(
X(Z, X, y'"

I
Z—1, 1V, y) I

1+
Wo —mc' &

x
I

—
I 4, ,,- t(~) (1+vs)y, ,,-(~). (14)

Eg

The ratio of the number of bound-state to the
number of continuum-state decays is therefore

I'a x(nz)' fWo
I

——1 Iz.
I'o f(Z, Wo) &mc'

(15)

This ratio is independent of nuclear matrix elements and
of the value of x= C~/Cr. This independence of nuclear
parameters enables us to calculate the bound-state
decay rate of a particular nucleus provided we know
empirically its continuum-state decay rate. The quan-
tities that are most important in determining the
magnitude of the ratio I'e/I'o occur as factors multi-
plying Z in Eq. (15); these factors are identical with
the ones found by the phase-space argument given in
the Introduction.

Pote added ie proof. The interference between terms
having different values for the sign of E can be elimi-
nated by assuming that atomic ground states are non-
degenerate and using parity arguments. This simpli6es
Eq. (14) if the Dirac Coulomb Hamiltonian is chosen
as the zeroth-order Hamiltonian.

III. SIMPLE EXAMPLES

The results of the preceding section are most simply
applied to atoms that initially possess no bound elec-
trons. For such atoms, Z can be written

( I l' (oi'~=~
I 1+ I I

—
I e,'(&)y, (&). (16)

Wo —mc') &Z j
' See Appendix I for a proof of this fact.
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I'a/I'@=4. 3X10 '2
=69X10 3. (18)

Excited states contribute about 22% to this ratio.
A recent series of ingenious experiments performed

at Oak Ridge National Laboratory" suggests a possible
approach to the problem of detecting bound-state
beta decay. The Oak Ridge group used a mass spec-
trometer in combination with electric and magnetic
fields to measure the charge on daughter nuclei from
the He' to Li' decay. A direct utilization of their experi-
mental arrangement is not possible since an electric
field was used to remove the charged nuclei from the
region of decay, but future modifications may make
possible the detection of bound-state decay.

The ratio (18) has also been computed by Sherk'
who used the original theory of Daudel et ul. ' Since the
original theory did not take into account either the
nonorthogonality of initial and final electron eigen-
functions [Eq. (4)]or the contribution of excited states,
our results differ appreciably from those of Sherk. '4

Moreover, we have ignored the final state electrostatic
interaction between the two electrons in the He' atom,
since one can show that the ratio 1'a/1'c is independent
of the choice of basis functions if the electron's binding

"Our result (17), even ignoring the contribution of excited
states, differs by a factor of P (neutron)/4 from the recent calcu-
lation of E. Galzenati et al. cited in reference 6. These authors
used an experimental value for Fg and a theoretical value for r~
that was calculated assuming x= —1. Hence, they did not take
advantage of the fact that r~/rg is independent of nuclear
matrix elements. Galzenati et al. also discuss the probability of
bound-state decay for A and E particles.

'3 T. A. Carlson, C. H. Johnson, and Frances Pleasonton, Bull.
Am. Phys. Soc. 6, 227 (1961).I am grateful to Dr. Carlson for
preprints of their work and for an informative private communi-
cation on the experimental detection of bound-state decay.

'4The numerical disagreement is not large since the effect of
the several calculational differences is partially cancelled by the
fact that Sherk used too low a value for the decay energy, 8'p.

This simplified form of Z can be used for many astro-
physical applications.

~Equations (15) and (16) can also be used to calculate
the relative number of times a neutron decays by
emitting a neutral hydrogen atom and an antineutrino
instead of emitting a proton, a free electron, and an
antineutrino. We find

(17)

where 20% of the bound-state decay probability is due
to decays into the excited states of the hydrogen atom. "

The most favorable case for laboratory detection of
bound-state decay is the H' —& He' transition for which
Wq —mc'=0.035 mc' and f=2. 8)&10 '. The tritium
bound-state decay rate is easy to calculate since
nonrelativistic wave functions are adequate to deter-
mine the decay probability to two parts in 104 [(nZ)'j.
One can derive a general formula for the overlap inte-
grals (Z=2, e, z= —1

~

Z=1, m= 1, K= —1) and, there-
fore, Z can be computed as accurately as desired. We
obtain

TABLE I. The relative probability of bound-state to continuum-
state decay for some nuclei when assumed completely ionized.
The ratios were calculated using nonrelativistic wave functions.

Isotope

C14
Si32
Nj63

41Nb"
44Ru"'

Pd172

47AgllP

FU 155

760S191

5'0
(units of mc2)

1.31
1.20
1,13
1.29
1.08
1.55
1.17
1.30
1.28

I.og] 0j"(Z,5'0)

—2.25—2.65—2.9—1.5—3.28—0.60—2.1—1.0—0.85

0.01
0.1
0.9
0.7
7
0.3
2
1
1

IV. ASTROPHYSICAL APPLICATIONS

The current theories of element formation in stars" "
assume that the appropriate nuclear reactions occur
at. very high temperatures, consistent with models of
stellar structure and evolution. The temperatures
assumed are so high that even the heavier nuclei are
stripped of electrons, and thus bound-state decay to
the E shell is possible for heavy nuclei. In the calcu-
lation of the relative abundances of elements produced
by nuclear processes in the interior of stars, the decay
rates that are expected for ionized atoms should be used.
These calculated decay rates can differ by orders of
magnitude from the rates measured under normal
terrestrial conditions. "

Several examples of the ratio I'a/1'c are given in
Table I for completely ionized atoms. Nonrelativistic
wave functions were used in the calculations and are

1 A more correct procedure is to modify the hydrogenic
Schrodinger equation for Z=2 by adding the potential due to an
electron in the is orbit of H3. This can be done by assuming
u (~) = —~l 4 (~) I'.

'6 E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F.,Hoyle,
Revs. Modern Phys. 29, 547 (1957).' A. G. W. Cameron, Ann. Rev. Nuclear Sci. 8, 299 (1958).

'8 The decay rates for completely ionized Pb'" and Pu"' differ
by three orders of magnitude or more from their normal terrestrial
values. These nuclei were not included in Table I because their
decays are probably erst parity forbidden and because relativistic
effects are important for such high Z. In calculating the decay
rate for nuclei with such high Z, it is important to realize that
the maximum beta-ray energy that is measured in the laboratory

P p
—mc2+AB, where AB is the difference in binding energies

between initial and final atomic states. The quantity AB is much
larger than 8"0—mc' for Pb"' and Pu2~. See, for example, M. S.
Freedman, F. Wagner, Jr., and D. W. Engelkemeir, Phys. Rev.
88, 1155 (1951).

energy is neglected. Sherk, following the suggestion of
Daudel et al. , took account of the final state electron-
electron interaction by using a screened hydrogenic
wave function. He determined the screening parameter
by minimizing the total energy. The wave function
found in this way has a Z,«of 1.688, which yields an
electron density at the origin of about 0.6 the unscreened
value. This screening method is incorrect since it
over-emphasizes the region of space in which the two
electrons are close together. "
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accurate to terms of order (nZ)'. '~ The case of Ru"' is
instructive since the half-life for a completely ionized
Ru"' atom is 8 times shorter than for a neutral atom.
The decay of Cs"' via two beta groups, which have
maximum energies of 0.086 Mev and 0.652 Mev, gives
rise to an interesting phenomenon that is not illustrated
in Table I. The Cs'" decay occurs via the higher energy
transition in 80% of the terrestrial decays, but the
lower and higher energy transitions occur about equally
often if the Cs'" atom is stripped of electrons. A similar
situation obtains for Te"'.

The isotope Sm'" is particularly interesting since the
half-life of this isotope has been used to determine the
time scale for the slow neutron capture process
(s process) in the region 63 (A (209."This estimate
is somewhat in error since the terrestrially measured
half-life was used; the ratio I'z/I'o obtained from Eqs.
(15) and (16) for Sm'" is 3. It is likely, however, that
Sm'5' is 6rst parity-forbidden, in which case one cannot
apply Eqs. (15) and (16) without further justification.
There are a number of other first parity-forbidden
transitions for which the ratio I' s/Fc obtained from
Eqs. (15) and (16) is large, for example, Ce'44, Pm"',
Tm'7', Au"', Hg ', and Pb ".' The author is currently
investigating the bound-state decay probability for
forbidden transitions.

V. CONCLUSION

We have developed the allowed theory of bound-
state decay for atoms of arbitrary electronic con6gura-
tion and have calculated the probability of bound-state
decay for some simple examples by making use of the
fact that the relative probability of bound-state to
continuum-state decay is independent of nuclear
matrix elements. We have also demonstrated the im-
portance of bound-state decay for nuclei in stellar
interiors.
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APPENDIX

The wave functions P„, i(R) are of the form'

The explicit forms of the real functions f and g are
given in reference (9). The part of @(R) that involves
e does not contribute to the allowed decay rate. Thus

fgx i"l
4-,-i(&)—= I( 0

(A2)

0
4-,+i(&)—=

I .
4i g i 2

(A3)

It is easy to see that, expression (11) is pure imaginary
if the forms (A2) and (A3) are used for the wave
functions.

The quantities (Ms) and A are defined as follows:

(Ms) = —,'LI(I+1)—I'(I'+1)+2j/(I+1). (A4)
and

I' I—1

( gX-i" ) (gx-i"q
4.,-i(&)= ( I=—(1+«r) I I, (A1)

t.+if'+,~) ( 0 )
where

~JR)/g (&)

We have used the fa,ct that f is proportional to g for
small r and that

"We have also neglected the difference between the maximum
beta-ray energy measured in the laboratory and W0 —mc'. This
approximation is valid for the cases we consider in Table I but
it is not always justi6ed.

—(2I—1)

, (I+1)

I(2I 1)—
(I+1)(2I+3)


