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Determining the size of a network dynamical system from the time series of some accessible units is a
critical problem in network science. Recent work by Haehne et al. [Phys. Rev. Lett. 122, 158301 (2019).]
has presented a model-free approach to address this problem, by studying the rank of a detection matrix
that collates sampled time series of perceptible nodes from independent experiments. Here, we unveil a
profound connection between the rank of the detection matrix and the control-theoretic notion of
observability, upon which we conclude when and how it is feasible to exactly infer the size of a network
dynamical system.
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Introduction.—From natural to technological settings,
network dynamical systems constitute a powerful approach
to study collective dynamics [1–3]. Within this modeling
scheme, each network node is associated with an individual
dynamical system and each link encapsulates the inter-
action between two coupled units. Fueled by the increasing
availability of massive datasets, the theory of network
dynamical systems promises to unveil the underpinnings of
complexity [4].
Toward achieving this ambitious goal, considerable

effort is being placed to establish effective methodologies
to build network representations from time series of
individual units. Through advancements in statistically
principled network reconstruction, neuroscientists can
tackle the inference of functional connectivity patterns in
the brain from electroencephalography data [5], Earth
scientists can utilize weather data to pinpoint causal links
underlying the climate [6], and biologists can track ani-
mals’ motion to unveil social structures behind collective
behavior [7].
Pervasive to most of these efforts is the assumption that

the researcher has complete access to all the nodes in the
network. However, seldom do we possess full knowledge
about the dynamics of the system, since many of the units
are hidden from measurements. Hence, the process of
network inference could be hindered by the presence
of hidden nodes that would confound the dynamics of
accessible units. For example, should one be interested in
the organization of a migrating fish school [8], they must
rely on measurements of only a few tagged individuals: the
vast majority of the school will not be measurable. In fact,
the researcher may not even know how many individuals
compose the school.
Detecting the number of hidden nodes from a few

perceptible nodes was the open question addressed in

Ref. [9]. Therein, the authors put forward a promising
model-free approach to estimate the true network size from
the rank of a detection matrix that comprises the sampled
time series of perceptible nodes from independent experi-
ments. Here, we uncover deep roots of this model-free
approach in the classical theory of control systems by
Kalman [10]. Upon these roots, we rigorously study the
innerworkings of thedetectionmatrix to determinewhen and
how it is feasible to exactly infer the size of a network
dynamical system. Our results demonstrate that the seem-
ingly distinct challenges of identifying the number of units in
a network fromperceptible nodes and reconstructing the state
of the whole network from them are, in fact, intertwined.
Detecting hidden nodes and network size.—We consider

a network of N dynamical systems described by a vector
function F∶RN → RN , such that

_xðtÞ ¼ F½xðtÞ�; ð1Þ

where xðtÞ ¼ ½x1ðtÞ � � � xNðtÞ�T collates the scalar states of
all the nodes,F encodes both the dynamics of the individual
units and their interconnecting network, and t ∈ Rþ is time.
Given an ensemble of M measurements, each sampled at k
consequent times t1;…; tk for n perceptible nodes, can we
infer that there are other N − n hidden nodes?
The approach of Ref. [9] is based on the detection matrix

Tðk;MÞ ¼

2
64
yð1Þðt1Þ � � � yðMÞðt1Þ
� � � � � � � � �

yð1ÞðtkÞ � � � yðMÞðtkÞ

3
75; ð2Þ

where yðmÞðtÞ ∈ Rn is the measurement vector formed by
the time evolution of the n perceptible nodes during themth
experiment. For a sufficiently large number of experiments
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and time samples, the authors proposed that the rank of
Tðk;MÞ ∈ Rkn×M is an estimate of N. Through extensive
numerical simulations, they found that the method works
reliably on several synthetic and experimental networks of
coupled dynamical systems, linear or nonlinear.
An example where the method fails.—To illustrate the

roots of the detection matrix in mathematical control
theory, we consider an undirected, unweighted path graph
of N ¼ 3 nodes, such that 1 is the center and 2 and 3 are the
terminals. Let the three nodes implement a linear consensus
algorithm [11], where each of them averages its state with
its neighbors according to

_xðtÞ ¼ −LxðtÞ; ð3Þ

with L being the Laplacian matrix [12], that is,

L ¼

2
64

2 −1 −1
−1 1 0

−1 0 1

3
75:

If only node 1 is perceptible, we could only measure a
sampled version of x1ðtÞ, which, upon integrating (3), reads

x1ðtÞ ¼
1

3
ð2e−3t þ 1Þx10 þ

1

3
ð1 − e−3tÞðx20 þ x30Þ; ð4Þ

where x10, x20, and x30 are the initial conditions.
By sampling the time-evolution of this perceptible node

at k times and considering M experiments associated with

initial conditions xð1Þ0 ;…; xðMÞ
0 , we construct the detection

matrix in (2). Irrespective of how large M and k are, it is
impossible to find three columns of the detection that are
linearly independent. The initial conditions of nodes 2 and
3 enter the evolution of the perceptible node only via their
summation, thereby leaving undistinguishable footprints
on the evolution of node 1. In this case, the rank of the
detection matrix will converge to two and the method will
incorrectly suggest that there is only one hidden node. To
produce three independent columns in the detection matrix
and infer the exact network size, we should require that
nodes 2 and 3 separately enter the evolution of node 1.
The mathematical backdrop to formulate general con-

ditions for the successful application of the detection matrix
should be sought in the notion of observability, formulated
by Kalman more than 50 years ago [10] to examine the
problem of reconstructing unmeasurable state variables
from measurable ones. Several recent studies within the
control community [13–19] have studied observability of
network dynamical systems, but they assumed complete
knowledge of the system dynamics. Here, we seek to lay
the mathematical foundations for the fundamental question
posed in Ref. [9], that is, to detect hidden units and network
size from a detection matrix assembled from raw time
series. We focus our mathematical treatment on linear

time-invariant (LTI) systems, like the consensus problem
in (3)—analysis of linear time-varying systems is included
in the Supplemental Material [20].
Theory.—For an LTI system with state matrix A, the state

transition matrixΦðt; 0Þ that maps the initial state vector x0
to its value at t is given by the matrix exponential [21], that
is, Φðt; 0Þ ¼ eAt. The computation of the matrix exponen-
tial can be carried out in a number of ways [22]. One
possibility is to apply Cayley-Hamilton theorem that states
that every square matrix satisfies its own characteristic
equation [22], thereby implying that any power of A higher
than N can be written as a linear combination of lower
powers, from 0 to N − 1. Since the matrix exponential is an
analytic function that can be written in Taylor series, we
establish

Φðt; 0Þ ¼
XN−1

j¼0

αjðtÞAj; ð5Þ

where α0ðtÞ;…; αN−1ðtÞ are unknown analytic time func-
tions that can be written in terms of the spectrum of A.
Assuming for simplicity that all the eigenvalues of

A are distinct, we can project (5) on each of the eigen-
vectors of A to obtain the following linear system for
α0ðtÞ;…; αN−1ðtÞ [23]:

eλit ¼
XN−1

j¼0

αjðtÞλji ; ð6Þ

for i ¼ 1;…; N,where λ1;…; λN are the complexeigenvalues
ofA. By introducingvectorsαðtÞ¼½α0ðtÞ;…;αN−1ðtÞ�T ∈RN

and EðtÞ ¼ ½eλ1t;…; eλNt�T ∈ CN , we can write (6) in
the compact matrix form EðtÞ ¼ VαðtÞ, where V ∈ CN×N

is the Vandermonde matrix constructed from the eigenvalues
of A. The jth column of the Vandermonde matrix is ½λj−11 ;…;
λj−1N �T . Given that the eigenvalues are distinct, V is invertible
and its determinant is equal to

Q
1≤i<j≤Nðλj − λiÞ [24].

Without loss of generality, we assume that the first n
network nodes are the perceptible ones, so that the output
matrix of the LTI system is C ¼ ½Inn; 0nðN−nÞ�, where Inn is
the identity matrix in Rn×n and 0nðN−nÞ is the zero matrix in
Rn×ðN−nÞ. From (5), the time evolution of the perceptible
nodes is

yðtÞ ¼ CxðtÞ ¼
XN−1

j¼0

αjðtÞOjx0; ð7Þ

wherewehave introduced thematricesOj ¼ CAj to form the
so-called [21] observability matrix O¼½OT

0 ;…;OT
N−1�T∈

RnN×N . The observability matrix of an LTI system maps the
initial condition to the vector collating the time derivatives of
the output at the initial time, up to the order (N − 1), thereby
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quantifying the extent by which the internal dynamics of the
network can be observed from its perceptible nodes.
For the assembly of the detection matrix in (2), we must

sample yðtÞ at k different times—for simplicity, we assume
that these times are equidistant at a sampling period Δt,
such that ts ¼ ðs − 1ÞΔt with s ¼ 1;…; k. Hence, we
determine the following compact form for the detection
matrix:

Tðk;MÞ ¼ ½αðkÞ ⊗ Inn�OX0; ð8Þ

where ⊗ is the Kronecker product [21], X0¼½xð1Þ0 ���xðMÞ
0 �∈

RN×M, and αðkÞ ∈ Rk×N collates the sampled values of the
coefficients in the Cayley-Hamilton expansion. By using (6),
we express each row of thematrix αðkÞ in terms of the samples
of EðtÞ, yielding

αðkÞ ¼ ET
ðkÞV

−T; ð9Þ

where EðkÞ ∈ ℂN×k is such that its sth column is EðtsÞ.
Two hypotheses on the quantity and quality of the

perceptible dynamics are needed to ensure that the rank
of the detection matrix could be informative of the size of
the network, or, at least, part of it. First, we should have at
least N time samples, that is, k ≥ N. Excluding the case of
imaginary eigenvalues spaced by multiples of 2π

ffiffiffiffiffiffi
−1

p
=Δt

and given that we are focusing on equidistant samples,
the first N columns of EðkÞ constitute a nonsingular
Vandermonde matrix, implying that EðkÞ is full row rank
[25]. Second, we should have M ≥ N to obtain N inde-
pendent experiments, such that X0 is full row rank.
Before we proceed, we recall three classical matrix

properties [24,27]. Given two conforming matrices A
and B: first, if A is full column rank, then rankðABÞ ¼
rankðBÞ; second, if A is full row rank, then rankðBAÞ ¼
rankðBÞ; and third, rankðA ⊗ BÞ ¼ rankðAÞrankðBÞ. By
recalling that V is invertible, the second property implies
that rankðαðkÞÞ ¼ rankðET

ðkÞÞ; given that EðkÞ is full row
rank, then αðkÞ is full column rank. By virtue of the third
property, the Kronecker product in (8) constitutes a full
column rank matrix and application of the first property
implies that rankðTðk;MÞÞ ¼ rankðOX0Þ. Finally, by recall-
ing that X0 is full row rank, application of the second
property leads to our main claim,

rankðTðk;MÞÞ ¼ rankðOÞ: ð10Þ

Hence, monitoring the rank of the detection matrix helps
estimating the rank of the observability matrix of the
associated LTI system, which is equal to the size of the
network if and only if the LTI system is (completely)
observable [21]. If the system is not observable, the rank of
the detection matrix provides an estimate of the dimension
of the largest observable subset of the system, based on

Kalman decomposition [21]. The latter consists of a
coordinate transformation that decomposes the dynamics
into an observable and an unobservable component. In the
transformed block-triangular structure of the system, all the
measurements are performed on the observable component,
which evolves independently of the unobservable one.
Analogous claims to (10) can be derived for linear time-

varying systems, associated with time-varying topologies
and node dynamics; see the Supplemental Material [20].
The main difference is that we might need the length of the
time series to be much larger than the network size, to
ensure convergence of the rank of the detection matrix to
the exact network size for observable systems.
Application of the theory to consensus problems.—With

respect to the earlier example of a three-node path graph,
the observability matrix is

O ¼

2
64

1 0 0

−2 1 1

6 −3 −3

3
75:

The rank of O is equal to two, consistent with what we
could discover from the detection matrix. Should we have
access to any of the terminals, rather than the center, O
would have rank equal to three and the detection matrix will
help discover the true size of the network. In this case,
the initial conditions of nonperceptible nodes would
separately enter the evolution of the perceptible one,
different from (4).
Even without access to the terminals, the three-node

graph is observable from its center if we weighted the links
by two unequal, nonzero constants w12 and w13, since
j detðOÞj ¼ jw12w13ðw12 − w13Þj ≠ 0 [28]. Likewise, intro-
ducing time-varying patterns in the interaction between the
nodes can facilitate observability by modulating the effect
of hidden nodes on the perceptible dynamics. As shown in
the Supplemental Material [20], it is possible to design
periodic temporal patterns that will ensure observability
of the path graph, even though the corresponding time-
average network would describe an unobservable LTI
system.
Criteria for observability of undirected, unweighted path

graphs of arbitrary size have been formulated in Ref. [17].
Interestingly, only path graphs with 2q nodes, with q being
a positive integer, are observable from any node, thereby
supporting the exact inference of the network size from any
choice of perceptible nodes. For any other path graph,
unless we have access to one of the two terminals [16],
the rank of the detection matrix could underestimate the
exact network size [30]. Similar claims are gathered for
undirected, unweighted cycle graphs [17], where observ-
ability is achieved by accessing two adjacent nodes or even
any two nodes if N is a prime number, but never via a
single node.
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The study of observability of path and cycle graphs
indicates some of the drawbacks in the application of the
detection matrix to networks with homogeneous degree
distribution. A much more dramatic scenario is noted when
dealing with star networks, where the detection matrix
may be of no practical use. In fact, for an undirected,
unweighted star of N nodes, observability requires access
to at least N − 2 of the terminals, so that correctly
estimating the network size from the detection matrix
requires accessing all but two nodes. The proof of this
claim is based on the Popov-Belevich-Hautus lemma [21],
which states that an LTI system is unobservable if and only
if A has an eigenvector w in the null space of C.
Specifically, the Laplacian matrix is symmetric [12],

with eigenvalues N and 0 of multiplicity 1, and 1 with
multiplicity N − 2. Taking node 1 as the center, the
eigenvector corresponding to the largest eigenvalue is
wN ¼ ½N − 1;−1;…;−1�T , the one corresponding to the
smallest one is w1 ¼ ½1;…; 1�T , and the eigenspace corre-
sponding to the unit eigenvalue is W2 ¼ Spanfw1; wNg⊥.
For any choice of n ≤ N − 2 perceptible nodes in the star
that includes the center, there is always w ≠ 0 inW2, which
has zero components in correspondence to all the percep-
tible nodes. If the center is not part of the perceptible
dynamics, any choice of n ≤ N − 3 perceptible nodes
would lead to the existence of some w ≠ 0 in W2 with
zero components in correspondence to any perceptible
node [31].
Dealing with random networks, we reach the same

conclusions, whereby the inference of the size of heterog-
enous networks from the detection matrix could not be
practically viable. We illustrate this claim by studying two
unweighted directed random graphs with average out-
degree bN=10c: the homogeneous random graph consid-
ered in Ref. [9] and a heterogenous random graph obtained
by adapting the version of the Barabási-Albert [32]
algorithm proposed in Ref. [33]. The algorithm starts from
a complete network of bN=10c þ 1 nodes and iteratively
adds new nodes in a sequence of steps, which are
preferentially attached to high in-degree nodes, maintaining
an almost constant out-degree distribution.
Figure 1 shows that access to less than 10% of the

nodes is sufficient to exactly infer the network size
[rankðOÞ ¼ N] of a homogeneous network, which is in
line with numerical evidence by Ref. [9], but reliably
estimating the size of a heterogeneous network is unfea-
sible. While the standard deviations in the rank of the
detection matrix are negligible for the homogeneous net-
work, we record standard deviations as large as 5% for
heterogeneous networks. Hence, the selection of the
perceptible nodes has negligible influence on the accuracy
of the inference for homogeneous networks, while it can
play a critical role for heterogeneous networks. This
evidence is in agreement with our analysis of star graphs,
which supports that access to the center is less important

than access to terminal nodes, and with results in Ref. [16],
which pinpoint at a mediating effect of local connectivity
on network observability in star-shaped networks.
These findings confirm that caution is warranted when

drawing inference regarding the size of a network from the
dynamics of perceptible nodes, unless one has some prior
knowledge regarding the network dynamical system.
Practically, we can only attempt at estimating the size of
the largest observable subset of the network dynamical
system, which could be only a small portion of the whole
system. For consensus protocols over unweighted net-
works, heterogeneity has a detrimental effect on observ-
ability, whereby access to most of the network nodes is
required for accurately inferring the network size.
Conclusion.—Technical progress in the theory of network

dynamical systems has often been informed bymathematical
control theory. For example, the study of synchronization of
chaotic oscillators has benefitted by a strong connectionwith
the theory of Lyapunov stability [34], which allows for the
formulation of a master stability function that clarifies the
interplay between individual dynamics and network top-
ology on synchronization. Likewise, the notions of control-
lability and controllability Gramian have clarified the
possibility of steering the evolution of a network dynamical
system toward desired states through control actions at a few
selected nodes [35,36].
We propose that the relationship between the detection

matrix [9] and the concept of observability uncovered in
this work could beget similar methodological and theo-
retical advances. This Letter shows that the success of the
detection matrix in exactly estimating the size of a network
is, in fact, conditional to the complete observability of the
system from its perceptible dynamics. Irrespective of the
number of independent experiments and the number of
samples, any inference based on measurable nodes is
limited to the observable portion of the network dynamical
system.

FIG. 1. Rank of the observability matrix of (a) homogenous and
(b) heterogenous directed random networks of N nodes, execut-
ing the consensus protocol in (3), as a function of the fraction of
perceptible nodes n=N, for N ¼ 50 (blue squares), N ¼ 100
(open red circles), and N ¼ 150 (orange triangles). Simulations
are average values over 100 runs and error bars indicate standard
deviations. The black dashed line indicates perfect inference of
the network size.
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The observable portion of the network dynamical system
could be a small portion of the entire system when dealing
with networks of heterogeneous degree distribution. For
example, while one or two perceptible nodes would be
sufficient to exactly estimate the size of an unweighted path
graph, all but two of the nodes must be accessed when
attempting to infer the size of an unweighted star graph
executing a consensus protocol. Likewise, working with
consensus over random networks, a few randomly selected
nodes may be sufficient for the inference of homogeneous
networks, but access to almost all the nodes could be
needed for heterogeneous networks. Hence, prudence is
recommended in the application of the approach to several
domains of investigation where heterogeneous networks
are pervasive, such as social, transportation, and socio-
technical systems [37]. Interestingly, temporal patterning of
the network connections might facilitate observability and
improve the power of the detection matrix, by enhancing
differences in the footprint of hidden nodes on the
perceptible dynamics.
From the perspective of control theory, the correspon-

dence between the detection matrix and the concept of
observability could be leveraged in other applications,
where one has knowledge of the network size, but not
about the dimension of its largest observable subset. In this
vein, it may be possible to establish model-free strategies to
study observability of networks from the detection matrix.
These model-free strategies could complement existing
methodologies to reconstruct network structure from time
series [38,39] and discover model equations [40], faci-
litating the study of critical control-theoretic metrics
from data.
Upon the discovered connection between the detection

matrix and network observability, one may pursue several
lines of further inquiry. In its present formulation, the
approach assumes that each network node has a scalar
dynamics, so that the dimension of the largest observable
set corresponds to the network size. It is paramount to
establish model-free techniques for inferring the size of
networks whose nodes have vectorial dynamics, potentially
of different order. In addition, the mathematical treatment
presented herein is based on a linear, analytic model for the
network dynamical system, which might not be valid in
many applications across natural and technological settings
where nonlinearities, nonsmoothness, and stochasticity
cannot be discarded. While the approach has been dem-
onstrated on synthetic data, its applicability is envisaged in
diverse areas, from epidemic spreading to collective behav-
ior of animal groups and medical advice scenarios that
involve multiple information sources.
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