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Stability of Matter. I 

FREEMAN J. DYSON AND A. LENARD* 

The Institute for Advanced Study, Princeton, New Jersey 

(Received 3 October 1966) 

The stability problem of a system of charged point particles is discussed, and a number of relevant 
t~eorems ar; proven. The total energy of a system of N particles has a negative lower bound propor
tIOnal to Na when no ass~mption. is made on the stati~tics of the particles. When all particles belong 
to a fixed number of fermIOn species, a lower bound eXists proportional to N. 

1. INTRODUCTION 

I N a recent paper, Fisher and Ruellel raised the 
question: Is a quantum-mechanical system of 

electrical point charges stable? By stability they mean: 
There exists a lower bound for the total energy 
proportional to the total number of particles. In this 
and a following paper we address ourselves to this 
problem, by proving with rigorous analysis a number 
of theorems which are relevant to it. 

The question of why matter is stable was very much 
the center of attention of physicists during the years 
after the .discovery by Rutherford that matter consists 
of positive and negative point particles interacting by 
Coulomb forces, and before the establishment of wave 
mechanics. The origin of quantum theory, starting 
with Planck's work, is intimately bound up with this 
question. Planck's quantization of the radiation 
oscillators and Bohr's quantization of orbits in atoms 
served to stop the energy in matter from disappearing 
into the bottomless sink of the classical radiation 
field. In 1925 wave mechanics provided a quantitative 
solution to this problem. It became clear that an atom 
with a nuclear charge Ze and Z electrons of charge -e 
could not have an energy state lower than -Z3Ry, 
where Ry = me4/21i2 is the natural atomic energy 
unit, the Rydberg, formed from the fundamental 
constants m, e, and Ii. 

This solved the problem of stability for single 
atoms. However, matter in bulk consists of a very 
large number of particles, positively and negatively 
charged, attracting and repelling each other by the 
Coulomb force. The effects of the Coulomb force are 
manifold and subtle, and often cooperative. They 
include such diverse phenomena as chemical binding, 
Illetallic cohesion, Van der Waals forces, super
conductivity, superftuidity, and (in all likelihood) 

• On leave of absence from the Plasma Physics Laboratory, 
Princeton University, Princeton, New Jersey. Present address: 
Department of Mathematics, lJIdiana University, Bloomington, 
Indiana. 

1 M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966). 

biology. The stability problem for matter in bulk is 
not a simple one. We need to understand why all these 
subtle effects have in common a saturation property, 
so that the binding energy per particle remains 
always bounded. 

The empirical stability of matter does not depend 
on non-Coulombian forces (nuclear forces, magnetic 
dipole interactions, retardation and relativistic effects, 
radiative corrections). These contribute very small 
corrections to the binding energies of atoms and 
molecules. We are therefore justified in adopting the 
point of view that "matter" is a collection of point 
charges, interacting only through Coulomb forces, and 
subject to the laws of nonrelativistic quantum me
chanics. If stability for this mathematical model is 
understood, stability for real matter is understood 
too. 

We now give a formal definition of stability. Let 
the Hamiltonian operator of N 2 2 charged particles 
be 

HN=f(-~~;) + LL eie; . (1.1) 
;~l 2m; l:Si<;:SN Ir; - r;1 

Here we use the standard notation; the charges ej may 
have either sign. We write 

Emin (N, e, m) = Inf ('p, H N 1p), (1.2) 

where the infimum is taken with respect to all N
particle wavefunctions 1p = "P(rl , r2 , ••• ,rN) nor
malized according to ("P,1p) = 1, all values of the 
masses satisfying 

0< mj ~ m, 

and all values of the charges satisfying 

-e ~ e; ~ e. 

(1.3) 

(1.4) 

If there is a numerical constant A such that for all N 

Emin> -AN Ry, (Ry = me4/21i2), (1.5) 

we say that the system is stable. 
In this definition, we have not mentioned the 
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424 F. J. DYSON AND A. LENARD 

statistics of the particles. Fisher and Ruelle in their 
paperl conjecture stability "with perhaps the re
striction that either the positive or the negative 
particles obey Fermi statistics." The complete state
ment of stability or instability therefore involves a 
specification of the statistics of the particles. In that 
case the constant A may depend on the number and 
kind (in the sense of statistics) of different particle 
species. 

The recent consideration of the stability probleml 
arose in connection with the need to establish a 
mathematically rigorous basis for statistical mechanics. 
Statistical mechanics makes physical sense only if 
thermodynamic quaritities such as the energy, entropy, 
etc. are extensive, i.e., proportional (asymptotically 
for a large system) to the number of particles. Thus, 
stability in the sense (1.5) is necessary for the 
definition of a finite free energy per particle. The 
investigations of Ruelle2 and Fisher3 were restricted to 
models with short-range forces only. Thus, our 
investigation of the stability problem for Coulomb 
systems may be regarded as a necessary first step in 
establishing a rigorous statistical mechanics based on 
Coulomb forces alone, a challenging and difficult 
task. 

2. STATEMENT OF RESULTS 

Quite simple arguments suffice to give lower 
bounds for the energy of a system of charged particles, 
provided we do not require these bounds to be good 
for large N. We begin by stating two theorems of this 
nature. They are superseded by later theorems, and 
are only interesting because of the simplicity of their 
proofs. 

Theorem 1: Under the hypotheses (1.3) and (1.4) 
we have 

Emin ~ -iN'I{N - 1) Ry. (2.1) 

This is the result of Fisher and Ruelle.1 For the sake 
of completeness, we reproduce their proof. 

The following theorem, whose proof is slightly more 
difficult, is a refinement of Theorem 1 for N > 5, and 
it holds under the same hypotheses. 

Theorem 2: 

Emin> -[N(N - 1)/J2] Ry. (2.2) 

Both of these theorems give lower bounds which 
are far too low (except for small values of N). Our 
first nontrivial result is a further improvement which 
comes much closer to the truth. 

2 D. Ruelle, Helv. Phys. Acta. 36, 183; 36, 789 (1963). 
8 M. E. Fisher, Arch. Rat!. Mech. Anal. 17, 377 (1964). 

Theorem 3: 
Emln > -ANt Ry, 

where A < 52 is an absolute constant. 

(2.3) 

Again, we assume inequalities (1.3) and (1.4) of the 
Introduction, but no assumption is made on particle 
statistics. 

In connection with these theorems the question 
arises, what is the best possible result of this type? 
We believe that it is 

(2.4) 

To prove that the exponent t cannot be decreased it 
is sufficient to exhibit states 1jJN of N particles such 
that for some constant A' 

(1jJN, HN1jJN) < -A'Ni-Ry. (2.5) 

Because the inequality (2.5) states an upper bound 
for the energy, conventional variational techniques 
are adequate for proving it. The result (2.5) is suggested 
by both a simple heuristic argument and by a detailed 
calculation based on the work of Foldy4 and others.s 
Since we are interested in lower bounds for which new 
techniques must be used, we do not discuss the 
derivation of (2.5) in this paper but refer the interested 
reader to the lectures one of us held at the Summer 
Physics Institute of Brandeis University in 1966.6 We 
find later that an improvement from (2.3) to (2.4) 
would necessitate going in an essential way beyond 
the techniques of the present work. 

While (2.5) indicates that a Coulomb system 
without any restriction on particle statistics is unstable, 
the following result shows the importance of the 
exclusion principle for stability. 

Theorem 4: Suppose that N particles whose masses 
and charges satisfy (1.3) and (1.4) belong to q ~ 1 
distinct species of fermions. Then 

Emin> _AqfNRy, (2.6) 

where A < 500 is an absolute constant. Briefly, a 
system whose particles belong to a fixed number of 
Fermion species is stable. 

In counting the number of species, each spin state of 
a type of particle must be counted separately, for the 
anti symmetry of the spatial wavefunction holds only 

4 L. L. Foldy, Phys. Rev. 124,649 (1961). 
S M. Girardeau and G. Arnowitt, Phys. Rev. 113, 755 (1959); 

M. Girardeau, ibid. 127, 1809 (1962); J. M. Stephen, Proc. Phys. 
Soc. (London) 79, 994 (1962); W. H. Bassichis and L. L. Foldy, 
Phys. Rev. 133, A935 (1964); W. H. Bassichis, ibid. 134, A543 (1964). 
Another paper concerned with the stability problem, with a point 
of view closer to ours is: E. Teller, Rev. Mod. Phys. 34,627 (1962). 

6 F. J. Dyson (to be published). 
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between particles of the same type and spin quantum 
number. Note that the constants A appearing in (2.3), 
(2.4), (2.6), and (2.7) below are not the same. 

Theorem 4 falls short in two ways of what we need 
in a theorem establishing the stability of matter. 
First, it ought not require that all particles be 
fermions. The statistics of the nuclei are irrelevant to 
stability. Therefore the hypothesis that only particles 
of one sign of charge ( say negative) are fermions should 
be suffiCient. Second, it is an empirical fact that all 
chemical binding and cohesive energies are determined 
by the Rydberg constant Ry = me4 j21i2 formed with 
the electron mass and not the nuclear mass. Stability 
should be independent of the nuclear mass and should 
persist even if the nuclear mass is taken infinite. Both 
of these defects are removed in our final theorem. 

Theorem 5: Let N negatively charged particles 
belong to q different fermion species. Let their masses 
and charges be subject to (1.3) and (1.4), respectively. 
Let an arbitrary number of positively charged particles 
be subject to the sole restriction (1.4) on their charges, 
their statistics and their masses being arbitrary. Then 

Emin > -AqiN Ry, (2.7) 

where A is an absolute constant. 

In this theorem there are no unnecessary hypotheses. 
However, its proof is longer and more difficult than 
those of the others. In this paper we prove only 
Theorems 1-4 and delay Theorem 5 to a separate 
paper. It turns out that the proof of Theorem 5 
requires all the preliminary results needed for the 
proofs of the earlier theorems, and a number of 
additional ones besides. Because of its fundamental 
significance, it would be desirable to simplify the 
proof of Theorem 5. We hope that this is possible by 
using ideas different from ours. 

We may remark that the dependence of Theorems 4 
and 5 on the number q of fermion species is probably 
not the best possible. The results stated should hold 
with the exponent i replaced by i. For some 
discussion of this point the reader is referred to 
Ref. 6. 

3. PROOFS OF THEOREMS 1 AND 2 

The following simple argument is due to Fisher 
and Ruelle. 1 Write the Hamiltonian (1.1) in the form 

HN=!! - Ili [ 
1i2 

1~,< i~N 2m,(N - 1) 

_ liZ Il. + eie i ] 

2m;(N - 1)' Ir; - r;1 

= !! H ii · 
l~i<i~N 

(3.1) 

The operator Hi; is the Hamiltonian of a two-particle 
system with charges ei , ej and masses mieN - 1), 
miN - 1). We have then 

EmiD = Inf (tp, H Ntp);;::: !! Inf (tp, Hiitp), (3.2) 
l~i<;~N 

{

_ (N - 1)mi m j e~e~ ( 0) 
2 eiei < , 

Inf(tp, Hijtp) = m, + m; 2h 

o (eie; ;;::: 0). 

(3.3) 

Among the pairs (i,j) there are at most iN2 for 
which eie; < 0, and for these 

(N - l)mm. e2e2 (N - 1)me4 N - 1 '-----'----"-, .-;' -'-' < = --R. (3 4) 
m

i 
+ m; 2h2 - 4h2 2 Y . 

This proves Theorem 1. 
The proof of Theorem 2 is slightly more com

plicated. We now write 

(3.5) 
where 

liZ 1i2 
Hii = - Ili - . Ili 

2mi(N - 1) 2mj(N - 1) 

+ e,e j e-It1r,-ril (3.6) 
Iri - ril 

and 
H;; = (eiei/lri - r;/)(l - e-It!r;-ril ), (3.7) 

and fJ is a positive number. We need a lemma which 
asserts that a particle in a Yukawa potential cannot 
have negative energy if the range of the potential is 
short enough. 

Lemma 1: The one-particle Hamiltonian 

H = -(h2j2m)1l - (e2/r)e- IlT (3.8) 

is nonnegative if 
(3.9) 

Thus if we choose 
fJ = (N - l)me2/.J2h2 (3.10) 

all Hi} are nonnegative operators. For the second 
sum in (3.5) we write 

I NN 
22 H;i = - 2 2 eiej 

l~i< i~N 2i=1 i=1 Iri - ril 
N 

x (1 - e-It1r;-r;l) - tfJ 2 e~. (3.11) 
;=1 

By Fourier transformation the double sum may be 
written in the manifestly positive form 

_1 fd3k (1_ 1 ) 1 fe;eik
'
r; 12> O. (3 . .12) 

27T2 k2 k 2 + fJ2 ;=1 
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Hence we have from (3.10) 

EOlin> -lflNe2 = -[N(N - 1)/~2] Ry. (3.13) 

It remains to prove Lemma 1. We write the energy 
in momentum representation 

(1p, H1p) = !f. fd3kk211ji(k)12 
2m 

_ L fd3kfd3k l 1ji*(k)1ji(k') (3.14) 
21T2 fl2 + Ik - k '12 ' 

where 1ji(k) is the Fourier transform of the wave
function. By the Schwarz inequality we have 

I f d3kfd3kl 1ji*(k)1ji(k') I <fd3kk211ji(k)12 J! 
fl2 + Ik - k '12 

-

(3.15) 

Therefore, 

(1p, H1p) ~ (!f _ e2
2 J!)fd3kk211ji(k)12 

2m 21T 

~ 0, (3.17) 

when the condition 

(3.18) 

which is the same as (3.9), is fulfilled. This proves 
Lemma 1 and Theorem 2. 

4. A THEOREM OF ELECTROSTATICS 

We begin to work toward the proof of Theorems 3-5 
by a simple consideration of electrostatics. We obtain 
a lower bound on the Coulomb energy of an arbitrary 
finite system of point charges. The resulting inequality 
is one of the essential tools for all that follows. 

Let r i (i = 1, 2, ... , N) be points in space at which 
there are charges ei • Let ai be arbitrary positive 
numbers and let Si be the spheres Ir - ril = ai • 

Suppose that each of the charges ei is distributed 
uniformly over the corresponding surface Si' This 
results in a surface distribution of charges, where the 
element of surface da carries the charge eida/41Ta~ if 
da is on Si' If E = E(x) is the electric field at the 
point x, produced by this charge distribution, we have 
for the total energy 

..!.. fd 3
X IEI2 = .! i ~ r da., 

81T 2t=141Ta i JSI 
N e; L 1 X! -2 dall --. (4.1) 

;-1 41Ta i Sf Ix - yl 

The double surface integral depends only on the 
distances Iri - ril between the centers of the spheres 
Si and Sj' and on their radii at and aj . For two 
spheres Sa and Sb' of radii a and b, respectively, whose 
centers are at a distance r, we write 

r da., J dall _1_ = ! _ ~(r, a, b). (4.2) 
Js. 41Ta2 

Sb 41Th2 Ix - yl r 

This defines the function ~. One finds 

! - min (.!.!-) 
r a b 

~(r, a, b) = (a + b - r)2 

4abr 

o 

(0 < r ~ la - bl), 

(la -bl ~ r ~ a + b), 

(a + b ~ r). (4.3) 

~ is positive and monotone decreasing with r in the 
interval (0, a + b), zero beyond it. 

Let us write 

Theorem 6: W(r, e) > U(r, e, a). 

The proof consists in merely observing that the 
total electrostatic field energy (4.1) is positive, and 
then rewriting the right-hand side in terms of the 
notation (4.2). Note that whenever 

ai + aj ~ Iri - ril (1 ~ i <j ~ N), (4.6) 

we have 
N e~ 

U(r, e, a) = -! -, (4.7) 
j=l 2a; 

and the inequality W > U is specially simple. The 
inequality in this form was used by Onsager in a 
little known paper7 in which he established an additive 
lower bound for the Coulomb energy of a system in 
which the particles are assumed to possess hard cores. 
Indeed, if it is required that 

Iri-ril~2a (l~i<j~N) (4.8) 

for some fixed positive a, one has 

W> -N(e2/2a) (e = max leil). (4.9) 

This observation was also made by Fisher and 
Ruelle.1 

In our work where there are no a priori given hard 

7 L. Onsager, J. Phys. Chern. 43, 189 (1939). 
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cores it is essential to keep the aj variable. Indeed, the 
power of Theorem 6 lies largely in the freedom with 
which the aj may be chosen. 

One useful choice is aj = tR j , where 

R j = min Ifi - fjl . (4.10) 
(l~i~N.i# il 

Then evidently (4.6) is fulfilled. Thus we have 

Theorem 7: 

(4.11) 

In this paper we use Theorem 6 only in the form of 
Theorem 7. The right-hand side of (4.11) may be 
interpreted physically as the potential energy of a 
fictitious system in which each particle is attracted by 
a Coulomb force to its nearest neighbor alone. The 
fictitious system always has a potential energy lower 
than the real Coulomb system, and-what is most 
essential-the number of terms out of which this 
fictitious potential energy is made up is N and not of 
the order of N2 as for the true energy. 

5. PROOF OF THEOREM 3 

Let fl' f2,' .. , fN be N distinct points in space. 
For a fixed) we write RjI, Rj2' .• " RiN- I for the 
N - 1 distances If} - fll, Ifj - f21, .•. , If} - fNI 
arranged in increasing order. Thus Ril [the same as 
R j defined by (4.10) above] is the distance between fi 
and its nearest neighbor among the other points, R}2 
is the distance between it and its second nearest 
neighbor, and so on. Conventionally we define 
RjI = 00 for I ~ N. The Rj! are well-defined functions 
of the N variable points Rj! = RjI(fl> f2' ... , fN)' 

Suppose we consider a quantum-mechanical system 
of N particles in a state described by the wavefunction 
"P = "P(fl , f2' ... , fN) normalized in the usual way 

("P, "P) =f· J d3Nr 1"P12 = 1. (5.1) 

Let us introduce the following quantities: 

Kl = ! f· . ·fd3Nr 1"P12 fRill (l = 1,2, ... ). (5.2) 
N }=l 

By definition of the Rj! we have 

KI ~ K2 ~ Ks ~ ... ~ 0, (5.3) 

and Kl = 0 for I ~ N. The Kl have the dimension of 
an inverse distance; K;l is a measure of the typical 
linear dimension of regions which contain I + 1 (but 
no more) particles. 

The quantity KI is particularly important in 
connection with the inequality (4.11). From it we 

immediately see the following fact: If the charges of a 
finite system of particles satisfy (1.4), then the total 
Coulomb energy satisfies the inequality 

(5.4) 

On the other hand, if the masses satisfy (1.3) we 
have for the kinetic energy 

("P, T"P) = ~ ~ f·· ·fd3Nr IV j"P1 2 ~ N.!t.... t, (5.5) 
~12m} 2m 

where 

t = 1. f f· . ·fdSN r IV j"P12• (5.6) 
N j=1 

Thus the total energy satisfies 

("P, HN"P) > N[(/i2j2m)t - e2Kl]' (5.7) 

Our aim is to derive an inequality involving both t 
and Kl which allows the establishment of a lower 
bound on the right-hand side of (5.7) independent of 
both. 

We begin by deriving an upper bound on the 
cumulative sUm 

k 

!Kl (5.8) 
1=1 

in terms of Kk-t-l and t. By definition, the sum (5.8) 
may be written out in detail as follows: 

1-f f fd Sri fd
3r i ! r d3rll!'" 

N i=1 j=1 P Jin 
j#i 

r d3r r d3r ... 
Jin Ilk Jout PI 

f 3 k 1"P12 
d rpN_2_k ! . 

out 1=1 Irll! - ril 
(5.9) 

P is a partition of the set of N - 2 integers {I, 2, ... , 
i-I, i + 1,' .. ,) - 1,) + 1,' .. , N} into two sets 
{lXI' ••• , IXk} and {PI' ... ,f3N-2-k}' one containing k 
integers, the other N - 2 - k integers (k being fixed). 
The sum over P runs over all such partitions. The 
phrase "in" under the integration signs means that 
the domain of integration is 

Ifill - fil < Ifs - fil (I = 1,2,' .. ,k), (5.10) 

while "out" means the opposite 

If PI - fil ~ Ifj - fil (I = 1, 2, ... , N - 2 - k). 
(5.11) 

In other words: fj is the (k + l)st nearest neighbor, 
and fll , fll " •• ,fll are (in some order) the first, 

I I k h . 
second, ... , (k)th nearest neighbors of t e pomt f i . 

We now make use of the following. 
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Lemma 2: For any positive A, and any complex 
valued function 'Y(r), having continuous derivatives 
and defined in the sphere n: Irl ~ b, 

f d3r 1'Y12 < (! +~) f d3r 1'Y12 + ~ f d3r 1V'Y12. 
In Irl A 2b In 4 In 

(5.12) 

The proof of Lemma 2 is given later. The inequality 
(5.12) is applied to the integration over the variable 
r"z (to be carried out first). The sphere n is given by 
(5.10), with the radius b = Ir, - ril and center ri . It 
follows that an upper bound for (5.8) is obtained if we 
replace the integrand in (5.9) by 

I 12(! ~ 1 ) ~ IV 12 (5 13) "P A + 21rj _ ril + 4 ","P. . 

For the first two terms the sum over I in (5.9) gives 
merely k equal integrals, so that for these one obtains 

(k/)') + IkKk+l' (5.14) 

The gradient term may be rewritten 

.l.1 J .. . JdSNr II IV,,"P1 2
, (5.15) 

4Ni=1 " 
where the prime on the summation sign indicates that 
only those values of (X are to be included in the sum 
for which r" is the (I)th nearest neighbor of r i with 
1 ~ I ~ k. (The set of these values of ex is a function 
of the integration variables r1 , ••• ,rN' of course.) 
This, in turn, may be written 

4~ Jl r . J dSNrM"k IV"tpI2, (5.16) 

where Mak = Ma.k(rl , ••• , rN) is the number of those 
r i to which ra is the (l)th nearest neighbor with 
1 ~ I ~ k. 

Lemma 3: For any finite set of points {rlo r2 ,' •• , 

r N} and (X = 1, 2, ... , N, 

Ma < (41T/W)k < 15k, (5.17) 
where 

For k = N - lone has to set KN = 0 (the proof 
makes use of Lemma 2 with n all space and b = 00). 

Lemma 4: Let the sequence of nonnegative numbers 
Xl , X 2 , ••• satisfy 

k 

I XI < akxk+l + bk (k = 1,2, ... ), (5.21) 
1=1 

where the coefficients ak and bk are nonnegative. Then 

Xl ~ AkXk-tl + Bk (k = 1,2, ... ), (5.22) 
where 

(5.23) 

and 
k-l b 1-1 k-l 

Bk = I _1- II -.!!.L. + bk II -.!!.L.. (5.24) 
!=11 + al 1=1 1 + ai i=1 1 + a j 

In the last two equations empty sums are interpreted 
as zero and empty products as unity. The proof is 
given later . 

We use Lemma 4 to eliminate K2 , Ks , ... , Kk from 
(5.20) and obtain a single inequality which involves 
only K1 , Kk+l' and t. Indeed, (5.20) is precisely of the 
form (5.21) with 

(5.25) 
and 

bk = (k/)') + Vt min {N - 1, (41T/W)k}. (5.26) 

We have then 

Ak = IT ~ = k! rei) . (5.27) 
}=l 3j - 1 r(k + i) 

A simple upper bound on Ak is obtained by noting 

[3j/(3j - 1)}S < (3j + 1)/(3j - 2), (5.28) 
so that 

In particular 
Ak < (3k + 1)i. 

AN _ 1 < (3N)i. 

(5.29) 

(5.30) 

W = 21T(1 - cos i1T) = 1T(2 - .J3) (5.18) The computation of Bk is more complicated due to 
is the solid angle inside a circular cone of half-angle iTT. the two different analytic expressions involved in 

(5.26). We temporarily ignore this complication and 
This Lemma is a purely geometrical fact which is set simply 

proved later. Since trivially M"k ~ N - 1, we have bk = k[(l/)') + (1T/W»)./]. (5.31) 
now the upper bound for (5.16) 

(The inequality will be somewhat worse but the 
tAt min {N - 1, (41T/W)k} (5.19) calculation is easier.) One finds with (5.25) and (5.31) 

in the notation (5.6). Thus we have obtained the the identity 
following inequalities 

Bk = 2(Ak - 1)[(1/).) + (1T/W»)'/). (5.32) 
~ 3k k).t. { 41T } 
~.KI < - Kk+l + - + - mm N - 1, - k In particular, using (5.30) 

1=1 2 A 4 W 

(k = 1,2, ... , N - 1). (5.20) BN- 1 < (3N)1[(2j).) + (21T/w)A/]. (5.33) 
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We now write down the inequality which follows from 
(5.20) by Lemma 4 for the case k = N - 1 

Kl < (3N)l[(2/A) + (27T/W)At], (5.34) 

or equivalently (since A is arbitrary) 

Kl < 4(3N)l(7Tt/W)t. (5.35) 

We are now ready to complete the proof of 
Theorem 3. From (5.7) and (5.35) we have 

('p, HN"P) > N(Ji2/2m)t - 4e2N(3N)l[(7T/W)t]t 

2 -ANt Ry (5.36) 
with 

A = (l67T/W)3f = 124.2· . . . (5.37) 

The last inequality in (5.36) arises by minimizing with 
respect to t. 

A lower value of A can be obtained by using (5.26) 
instead of (5.31) to compute BN - 1 • We find A < 52. 
However, the exponent! cannot be improved. The 
latter originates in the factor! in (5.25) and that goes 
back to the factor! on the right-hand side of (5.12) 
in Lemma 2. The inequality in (5.12) can be made to 
approach equality with arbitrary precision, as the 
example'f" = const and 

r d3r 1'f"12 = l... r d3r 1'f"12 
In Irl 2b In (5.38) 

shows. It is clear that no constant larger than ! 
would do. 

lt is also easy to see that as long as we use not the 
true Coulomb energy W but rather the lower estimate 
given by Theorem 7, it is impossible to improve on 
the exponent! of Theorem 3. For we can exhibit a 
sequence of states "PN such that 

• 
("PN' [T + U]"PN) "-' -AN" Ry (5.39) 

as N -+ 00. Take wavefunctions of the form 

N 

"PN(r1, ... , rN) = II uA(rj ), (5.40) 
j=1 

where ul\(r) is a smooth wave packet of spatial extent 
A. The energy is about 

N{iC 1.. _ e2 N
l
} (5.41) 

2mA2 A ' 

because in the absence of correlations the nearest
neighbor distance is about the mean interparticle 
distance AN-(l). If N is taken large and A = A(N) is 
taken to minimize (5.41) one obtains (5.39). Therefore 
a significant improvement over our Theorem 3 can be 
achieved only by giving up the use of Theorem 7. 

6. PROOFS OF LEMMAS 2, 3, AND 4 

In order to complete the proof of Theorem 3 we 
now have to prove the three lemmas used in the last 
section. 

We begin with Lemma 2. Suppose first that 0 is an 
arbitrary region and VCr) an arbitrary potential. The 
ground-state energy € of a particle of mass (2Ji2/A) in 
this potential is defined by 

€ = Inf {L d3r(!). 1V'f"12 + V 1'f"12) / In d3r 1'f"12}, 

(6.1) 

where the infimum is taken over all wavefunctions 'f" 
defined in O. No boundary condition is imposed on 'f", 
but the minimizing'f" satisfies the "natural" condition 

(n • V)'f" = 0 (6.2) 

on the boundary of O. The eigenvalue equation for 
€ is 

-!AV2'f" + V'f" = €'f". (6.3) 

Since the minimizing'f" is positive and nonzero in 0, 
we may introduce the vector 

w = -(V'f"/'f"), 

so that (6.3) becomes 

€ = V + tA(div W _(2). 

Taking the gradient of (6.4), we find 

(6.4) 

(w • V)w = iV2W + (2/A)VV, (6.5) 

an equation identical with the Navier-Stokes equation 
for steady flow of a fluid with velocity wand with 
kinematical viscosity equal to t. We do not pursue 
this peculiar hydrodynamical analogy any further 
(see note added in proof). Integrating (6.4) over the 
volume 0, we obtain 

(6.6) 

where < )av denotes an average over 0, and the term 
in (div w) has vanished by virtue of (6.2). 

We apply this analysis to the special case of a 
Coulomb potential 

VCr) = _,-1 

in a spherical shell 0 defined by a :::;; Irl :::;; b. In this 
case 

(V)av = -l-[(b2 - a2)/(b3 - a3)] > -3/2b. (6.7) 

The conclusion (5.12) of Lemma 2 states that 

€ > -(3/2b) - (1/),) (6.8) 

for the spherical region Irl < b. If (6.8) holds for the 
shell a :::;; Irl :::;; b, then Lemma 2 follows by taking 
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the limit a-+- O. By (6.6) and (6.7), we have only to 
prove 

(6.9) 

for the spherical shell n. 
For a spherically symmetrical n, the ground-state 

'¥ is spherically symmetric, and the vector w is 
parallel to r. We denote by ro the component of the 
vectorw in the radial direction. Then (6.5) becomes 

ro" + 2ro'[(l/r) - ro] + (2/r2)[(2/A) - ro) = 0, 

(6.10) 

where the prime denotes differentiation with respect 
to r, and the boundary condition (6.2) gives 

ro(a) = ro(b) = O. (6.11) 

If ro(r) were ever negative in a S r S b, there would 
be at least one minimum with 

ro" ~ 0, ro' = 0, ro < 0, 

which contradicts (6.10). If ro(r) were ever greater 
than (2{ A), there would be at least one maximum with 

w" S 0, ro' = 0, ro > (2/A), 

again contradicting (6.10). Therefore 

o S ro(r) ::;; (2/A) for a::;; lrl S b, (6.12) 

which proves (6.9) and also Lemma 2. 

Lemma 3 deals with a geometrical property of a 
finite set of points in space. Let this set be {Fa, 

FI , .• " Fn}. We distinguish a point, Fo say, and attach 
an index to each of the rest of them. The index of Fi 

is said to be the integer I if Fa is the (l)th nearest 
neighbor of Fi in the given set. Let now k ~ 1 be 
fixed, and define a certain subset, say {rl , F2, ••• , Fm}, 

consisting of all those points whose indices do not 
exceed k. We want to prove 

m ::;; (417'/ro)k, (6.13) 

with ro defined in (5.18). 
Let Ce be the circular cone with vertex at Fo, 

half-angle t17' and axis pointing in the direction £). 

Let v = v(£) be the number of points among {rl' 
F2 ,"', Fm} which are inside Ce • We have 

(6.14) 

where the integration is over the solid angle element 
formed by varying £). Thus (6.13) follows if we show 

v(fJ) ::;; k. (6.15) 

Let now fJ be fixed, and suppose for the sake of 
definiteness that out of {FI, F2,"', Fm} the first v 

points are inside CIJ' If v = ° or 1, (6.15) is true 
trivially, so we may suppose v ~ 2. We choose the 
notation so that 

Iro - fII ::;; Ifo - F21 S ... S Ifo - Fvl. (6.16) 

Take an i (1 ::;; i::;; v-I) and consider the triangle 
(Fo, Ft , Fv)' Since the angle at Fo is ::;; i17', the largest 
angle ofthis triangle must be either at r, or at r •. But 
the latter is excluded because IFo - Fil S Ira - Fvl and 
in a triangle the largest side occurs opposite the 
largest angle. Thus the angle at r t is largest and so, by 
the same principle, 

Ir. - Fil ::;; Ir. - Fol. (6.17) 

Since this is true of i = 1,2, ... , v-I, Fo cannot be 
less than the (v)th nearest neighbor of Fv or, in other 
words, the index of Fv is at least v. By assumption this 
index does not exceed k, therefore v S k which is 
what was to be shown. This completes the proof of 
Lemma 3. 

We may remark that the numerical factor 417'/ro = 
8 + 4.J3 = 14.928' ., in Lemma 3 is close to the 
best possible (if indeed not the best). To see this we 
display a set of n = 12k + 1 points such that 12k of 
them possess the index k. Choose one point Fo at the 
center of a regular icosahedron and the rest of them, 
Fl , F2 , '" , Fn in groups of k very close to the 12 
vertices. Since the edge of an icosahedron exceeds the 
distance of its center from its vertices, the center ro 
is the (k)th nearest neighbor to all 12k points. Thus 
the best constant of Lemma 3 must be ~ 12. 

To prove Lemma 4 we choose a fixed k ;;:: 2 (the 
case k = 1 is trivial), and define coefficients h! as 
follows 

{

hi = _1_rr_ai _ (I = 1,2,"', k - 1), 
1 + a! i~l 1 + a j 

krr-l aj 
hk = -- . (6.18) 

j~l 1 + a j 

These quantities satisfy 
k 

1,h; = 1, 
j=1 

k 

1,h; = a l_1hl_l (l = 2,3,' .. ,k). (6.19) 
1=1 

Now multiply the first k of the inequalities (5.21) by 
hI, h2' .. " hk respectively and add (this is valid 
because hi ~ 0). The inequality which results is just 
(5.22) with Ak and Bk given by (5.23) and (5.24). 

7. PROOF OF THEOREM 4 

We now assume all particles are fermions and that 
they fall into q ~ 1 groups so that the exclusion 
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principle holds between particles of the same group. 
No assumption is made about the number in each 
group except that the total number is N ~ q + 1. 

We make use of the antisymmetry of the wave
function of identical fermions only by the application 
of the following inequality. 

Lemma 5: Let'l" = 'l"(Xl' X2, ... , xv) be a function 
of v ~ 2 space points having continuous first 
derivatives, antisymmetric with respect to interchange 
of any two points, and defined with all points in a 
sphere Q of radius A. Then 

r d3vx i IVi'l"1
2 ~ (v - 1) ~ r d3vx 1'l"12, (7.1) In i-I A In 

where ~ = 2.082 is the smallest positive root of the 
equation 

(d2/dx2)(sin x/x) = o. (7.2) 

For simplicity take v = 2 (the proof for v ~ 3 is 
analogous). Expand 

00 00 

'l" = 'l"(x, y) =! ! Cn,munCx)um(y) (7.3) 
n-O m-O 

in terms of the complete orthonormal set of eigen
functions {unCx)} defined by the eigenvalue problem 

(7.4) 

which is important in its own right. It involves only 
t and K p _ 1 for some p ~ q + 1. It depends purely on 
the anti symmetry of the wavefunction and has 
nothing to do with the Coulomb problem as such. 

Theorem 8: For a system of N ~ q + 1 fermions 
belonging to q ~ 1 species 

(43W)[p/(p - q)]t ~ K~_1 (7.9) 

for q + 1 ~ P ~ N. 

The proof of Theorem 8 is based on Lemma 5. 
Before proving it we show how Theorem 4 is derived 
from Theorem 8. Since for q = 1 the physical content 
of Theorem 4 is vacuous, we may assume q ~ 2. From 
(5.20) and Lemma 4 we derive, using (5.29) and (5.32), 

Kl < (3p)![Kp_l + (2/A) + (21T/W)At]. (7.10) 

The inequality (7.9) may be rewritten in the alternate 
form 

Jl 43 _P- t - K + ~ > 0 
r 8~2 P _ q p-l f1 - , (7.11) 

where f1 is an arbitrary positive number. From (7.10) 
and (7.11) we eliminate K p _ 1 , obtaining 

Kl < (3P)t[(21T A + 43 _P- f1)t + 2(! + !)J. 
W 8e P - q A f1 -A",un(x) = EnU,;(X) 

with the boundary conditions 

o 
Or un(x) = 0 for r. = Ixi = A. 

One finds 

(7.12) 

Comparing with (5.34) we observe that (7.12) is a 
(7.5) weaker inequality when p > N. Thus we may ignore 

the restriction p ~ N given in Theorem 8 and choose 

L d3x In d3
y IV",'l"1

2 
= io loEn ICn,m1

2 

1 0000 
2 

=-! !(En+Em)ICnml 
2 n-O m-O 

(7.6) 

because the antisymmetry of'l" implies Cn,m = - Cm,n' 
Also 

In d3x In d3
y 1'l"12 = Jo loICn,mI

2
• (7.7) 

The ratio of (7.6) to (7.7) is smallest when Cn,m =;C 0 
only for those two values n =;C m for which En and Em 
are the two lowest eigenvalues. There is one s-state 
eigenvalue EO = 0 with uo(x) = (!1TA3)-l, and three 
degenerate p-state eigenvalues 

(7.8) 

The remaining E; all lie higher than (7.8). This com
pletes the proof of Lemma 5. 

The proof of Theorem 4 is based on an inequality 

p = 2q (7.13) 

for any N ~ q + 1. Finally, A and f1 are chosen to 
minimize the right-hand side of (7.12). This results in 
the following. 

Corollary to Theorem 8: Under the conditions given 
in the theorem, 

(7.14) 
with the constant 

A = 2· 6![ e:f + G:SJ 
= 22.2···. (7.15) 

The proof of Theorem 4 is now completed by using 
(7.14) in (5.7) 

("P, HN"P) > N[(/i2/2m)t - e2K 1] 

> N[(/i2/2m)t - Aq!e2tl] 

~ _A2qfNRy, (7.16) 

with A2 < 500 by (7.15). 
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8. PROOF OF THEOREM 8 

We begin by introducing an arbitrary length A. 
and writing 

t = (41TA3)-1fd3Nr.l IIV;tpI2 f day. (8.1) 
3 N i=1 Jlrrtll:5,t 

If the order of the integrations over the rj and over y 
is interchanged, this becomes 

t = (41TA
3
)-11.. fd3y ~ f d3ril " -f d3riN_. 

3 N p out out 

x rn d3ril .. 'in d3ri.[IViltpl2 + ... +IVi.tp 12]. 
(8.2) 

The summation is over all partitions P of the set of 
subscripts {I, 2, ... , N} into two parts {iI' i2 , ••• , i.} 
and {jI,h,'" ,jN-v}' The phrase "in" under an 
integral sign signifies that the corresponding integra
tion variable is restricted to lie inside the sphere of 
radius A around the center y, while "out" means the 
opposite restriction. 

We now drop all terms from the sum over P which 
do not satisfy 

p~'V~N, (8.3) 

Here 0v = 0.(r1' r2, ... ,rN) is the set of points y 
such that the inequality Ir; - yl ~ A is true for 
exactly v (and not more) values of the subscript i. We 
find it convenient to rewrite (8.7) somewhat differently 

.tv fQ. d3
y = it fa

i 
d

3
y. (8.8) 

E; is a set of points y, defined by the condition that 
Ir; - yl ~ A., and at least p - 1 more inequalities of 
the same type Irj - yl ~ A (j:;!: i) hold. The identity 
(8.8) is verified easiest after its intuitive content is 
grasped in terms of simple examples. 

The next step is to obtain a lower bound for the 
volume of Ei (as a function of the r1, ... , rN)' It is 
at this point that we introduce the (p - l)st nearest
neighl'or distance R i .'P-1 of the point r;. When 
Ri . ,])--1 ~ A we write 

fa; d 3y ~ O. (8.9) 

Let then R;,p_1 < A. There are precisely p - 1 values 
of j (j:;!: i) such that 

Ir; - r;1 ~ Ri,'])--I' 

Consider the set E; of y satisfying 

(8.10) 

where p is an arbitrary integer satisfying 

q+l~p~N. 

Iy - ril ~ 2 - R i • P- 1 • 

(8.4) E; is a sphere of volume 

(8.11) 

Consider now a particular P and the particles labeled 
i1 , i2 , ••• , i. which are inside the sphere of radius 2 
around the center y. Let VI' '1'2, ••• , Vq be the numbers 
among them which belong to the first, second, ... , 
(q)th species respectively. We apply Lemma 5 to the 
integration over the VI variables belonging to the 
first species, then over the 'V2 variables belonging to 
the second species, and so on. Since 

Q p - q 
~ (vs - 1) = V - q ~ -- 'JI (8.5) 
8=1 P 

under the restriction (8.3), we obtain 

The prime on the summation sign stands for the 
restriction of the sum to terms P for which V = v(P) 
satisfies (8.3). We now restore the original ordet of the 
integration variables. This gives 

fa;' d3y = 43
1T 

(2 - R;.P_l)3. (8.12) 

For any y inside it and any j satisfying (8.11) one has 
Iy - rjl ~ 2, which shows that E; is a subset of E;. 
So we have 

L; d2y ~ ~1T (A - Ri,'])--It. (8.13) 

We now take (8.13) and (8.9) into (8.8) and (8.7). 
This gives 

t ~ ~: p - q .1 fd 3Nr Itpl2 f max {o, (1 _ R; P_I)3}. 
2 p N '=1 2 

(8.14) 

This inequality holds for any positive A. We average 
it over all values of A in the interval 0 ~ 2 ~ a. We 
have 

1 fa d2 {( R)3} ~ Jo A2 max 0, 1 - ;: 

= 4;R(1-~) max{o, (1- ~r} 
~ (lj4aR) - (l/a'!.). (8.15) 
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Therefore (8.14) implies 

t 2 e p - q (KV-I - !). 
p 4a a2 

Theorem 9: Suppose N particles satisfy the con
ditions of Theorem 4 and are subject to an external 

(8.16) field generated by a smooth charge density with finite 
self-energy. Then 

The best value of a is 8(Kv_ I )-I, yielding Emin> -A(2q)iN Ry, (9.2) 

t > ~P - q K2 . 
- 64 P v--l 

(8.17) where A is the same constant as in Theorem 4. 

This completes the proof of Theorem 8,- except that 
64 appears instead of the coefficient 43 on the left 
side of (7.9). 

We have succeeded in deducing (8.17) with the 
coefficient 43, starting from (8.14). This requires only 
elementary but complicated manipulations which we 
do not present here.8 In mathematical terms the 
problem is the following. Given some probability 
distribution function F(t) on the positive real axis 
[F is nondecreasing and F(O) = 0, F( OCJ) = 1], such 
that 

f'(X - t)3 dF(t) :::;; C2X5 (8.18) 

for all positive x, where C is a constant. Write 

500 1 
K = - dF(t). 

o t 
(8.19) 

What is the best possible inequality of the type 

(8.20) 

The argument above shows (J.:::;; 64. Our more 
elaborate argument gives (J. :::;; 43. It is easy to see 
that the best (J. cannot be less than 40. For if F(t) = 
min {l, lOC2t2}, then K2 = 40C2. To determine the 
best (J. is an amusing problem, but it would give only 
a trivial numerical improvement of Theorems 8 and 4. 

9. SMOOTH BACKGROUND CHARGE 

Theorem 4 can be generalized by adding a smooth 
external charge distribution to the N fermions. The 
particles now interact not only with each other but 
also with the field produced by this background 
charge. Let p(x) be the charge density producing the 
external field. The Hamiltonian is now 

(9.1) 

The last term is a C number, the self-energy of the 
background charge. We assume that it is finite. 

• For details, see Ref. 6. 

To prove this we consider a fictitious system 
consisting of 2N particles, N of them having the given 
masses mi and charges ei , and the other N of them 
having the same masses mi but opposite charges -ei • 

The total number of species is 2q. Let H;N denote 
the Hamiltonian of this system, which includes the 
kinetic energy and the Coulomb energy due to the 
interactions between all 2N charges. Consider now 
the energy of this system in a state'Y defined by 

'Y(cI , ... , r2N) = V'(cI , ... , cN)V'(cN+l' ... , C2N)· 

(9.3) 
It is 

('Y, H~N'Y) = 2(V', HNV') - f d6Nr 1V'(cl • ... ,cN)12 

2N 2N e.e. 
X 1V'(cN+I,···,C2N)1 !! ' , 

i~lj~N+1 ICi - cil 

(9.4) 

Here by HN we mean the Hamiltonian (Ll), i.e., 
the energy of the first N particles alone. Theorem 4 
asserts that 

('Y, H~N'Y) > -A2N(2q)i Ry. (9.5) 

We compare this with the expectation value of the 
operator NN given by (9.1) in the state V'. 

(V', NNV') = (V', HNV') + f daNr 1V'(cl , ... 'CNWf dax 

x 5: eiP(x) +! fdaxfday p(x)p(y). 
i~llci - xl 2 Ix - yl 

(9.6) 
Therefore we have 

where 

p'(x) = p(x) + f daNr 1V'12it e;!5(ci - x). (9.8) 

The integral on the right-hand side of (9.7) is non
negative. Therefore 

(9.9) 
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and comparing this with (9.5) the conclusion of 
Theorem 9 follows. Equality can occur in (9.9) only 
when p' = 0 identically, that is when the given 
background charge density exactly cancels the charge 
density S d3Nr 11p12 ~i eib(r; - x) of the particles. 

In this proof it is essential that we included the last 
term in (9.1), the self-energy of the background charge, 
in the definition of the Hamiltonian n N' Thus it is 
impossible to think of p(x) as the (singular) charge 
density of a certain number of fixed point charges, for 
in that case the self-energy is infinite and Theorem 9 
is vacuous. This consideration shows that our 
Theorem 5 is a significantly deeper result than 
Theorem 9, because it asserts the stability of a system 

JOURNAL OF MATHEMATICAL PHYSICS 

of charged fermions in the field of fixed point charges 
where the energy, by definition, does not contain any 
self-energy term. 

Note added in proof: For a deeper discussion of 
(6.5) see E. Nelson, Phys. Rev. 150, 1079 (1966). 
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The translational in variance properties of a one-dimensional fluid with finite range forces are investi
gated. For N particles in the interval [0, L], with a two-body interaction potential w(x) = 0 for x Z R, 
we find the following: (a) If w(x) has a hard core of diameter d and R ~ 2d, each n-particle distribution 
function Dn(x

" 
... ,xn) is translationally invariant if and only if L > 2(N - n)R and x,, ... , Xn lie 

in [(N - n)R, L - (N - n)R]. (b) For arbitrary finite values of R, with or without a hard core, the 
above conditions are sufficient for translational invariance of the Dn. These conditions hold for all 
temperatures. 

I. INTRODUCTION 

I N a recent paperl (referred to as 1), translational 
invariance properties for a finite one-dimensional 

hard-core fluid were established. It was found that, 
for densities less than half the close packing density, 
there exists a central region in which the one-, two-, 
... , N-particle distribution functions are transla
tionally invariant. It is the main purpose of this paper 
to extend these results to one-dimensional systems 
with arbitrary forces of finite extent, R. 

In I, use was made of the fact that, for systems with 
nearest-neighbor interactions, the n-particle distribu
tion functions, D n' are expressible in terms of the 
configurational partition function. For pure hard 
cores (no attractive forces), this function is well known, 
and its precise form was used explicitly throughout 
the investigation of paper I. In order to extend the 

1 H. S. Leff and M. H. Coopersmith, J. Math. Phys. 8, 306 
(1967). 

investigation to a general class of potentials of finite 
extent, we employ a method which expresses deriva
tives of distribution functions in terms of other 
distribution functions. These expressions are in the 
form of recursion relations which lead to the transla
tional invariance properties of the n-particle distribu
tion functions. The bulk of this paper deals with the 
derivation of these recursion relations. Once obtained, 
the translational invariance properties are immedi
ately established using mathematical induction. 

The main result is that, for N particles contained 
in the interval [0, L], where L > 2(N - n)R, there 
exist central regions, [(N - n)R, L - (N - n)R], in 
which the functions Dn for n = I, ... , N are trans
lationally invariant. It is rigorously established that, 
for nearest-neighbor potentials, these translational 
invariance properties do not hold outside the central 
regions and evidence that this is also true for poten
tials of arbitrary extent is presented. An interesting 


