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We propose a quantum metrology protocol for the localization of a noncooperative pointlike target in
three-dimensional space, by illuminating it with electromagnetic waves. It employs all the spatial degrees
of freedom of N entangled photons to achieve an uncertainty in localization that is

ffiffiffiffi
N

p
times smaller for

each spatial direction than what could be achieved by N-independent photons or by classical light of the
same average intensity.
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Quantum metrology [1–5] is a set of procedures that
increase the precision in the estimations of parameters by
employing quantum effects such as entanglement or
squeezing. By entangling N different probes, typical
protocols achieve a

ffiffiffiffi
N

p
decrease in the statistical noise

over what would be achievable without entanglement. Here
we will present a quantum metrology protocol for a radar.
Radar stands for radio detection and ranging, so the bare
minimum for a protocol to qualify as such is that it is able to
detect a target and return its position relative to the receiver.
However, previous quantum radar protocols [6] based on
quantum illumination [7] fail this requirement, as they can
only discriminate whether the target is present or not, and
they give a quantum advantage only in the presence of a
rather specific thermal noise model. Other protocols [8,9]
still are unable to provide both detection and position of the
target with enhanced precision. In this Letter, we will
present a quantum metrology protocol for a radar. Instead,
our protocol returns both and does not require the target to
cooperate. It achieves an N3=2 decrease in the uncertainty
volume of the target position over what could be achieved
withN-independent photons of the same spatial bandwidth,
namely, a

ffiffiffiffi
N

p
decrease in uncertainty along each of the

three spatial dimensions. The main drawbacks of our
protocol are the difficulty in creating the required entangled
state of the electromagnetic field and its sensitivity to noise.
The main idea of our protocol is to combine a three-

dimensional generalization of the one-dimensional quan-
tum localization protocol of [10,11] with a free-space
propagation analysis of the signal from target to receiver.
The use of all the spatial degrees of freedom of the
entangled photons allows three-dimensional localization.
Our protocol can be used as an aid to conventional radar
systems rather than a replacement.
The protocol allows a receiver to find her position

relative to an uncooperating target object that is illuminated
with a suitable entangled state of light composed of N

entangled photons, see Fig. 1. To this aim, the receiver
measures their arrival position and arrival time on a
transverse plane at her location. Consider N ¼ 2 first.
The joint probability of photodetection, namely, of finding
the two photons at times t1 and t2 and at positions r⃗1 and r⃗2
(two-dimensional transverse vectors) is

pðt1; r⃗1; t2; r⃗2Þ ∝ jh0jEþðt1; r⃗1ÞEþðt2; r⃗2Þjψ2ij2; ð1Þ

where j0i is the vacuum state, the proportionality constant
depends on the detector’s specs [12], jψ2i is the state of the
two photons (we work in the Heisenberg picture, where the
operators evolve from an initial time t0), and Eþðt; r⃗Þ≡R
d3k3gðk⃗3; t; r⃗Þaðk⃗3Þe−iωðt−t0Þ (e.g., [13]), where g is the

transfer function (defined below) between the object plane
(at the target’s position) and the image plane (at the position
of the receiver). aðk⃗3Þ is the electromagnetic field annihi-
lation operator for the mode with wave vector k⃗3 ¼
ðkx; ky; kzÞ. As customary, we will employ the far field
approximation, valid when the object-receiver distance is
sufficiently large: the longitudinal component of the wave
vector of the received light is much larger than the trans-
verse components: k2x þ k2y ≪ jk⃗3j2, with jk⃗3j ¼
ðk2x þ k2y þ k2zÞ1=2 ¼ ω=c (ω is the light frequency). So

we can approximate the k⃗3 integral as
R
d3k3 ¼R ðdω=c2Þd2k= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=c2 − ðk2x þ k2yÞ=ω2
q

≃ ð1=cÞ R dωd2k;

with k⃗ ¼ ðkx; kyÞ as the two-dimensional transverse wave
vector. Then, Eþ given above can be replaced by

Eþðt; r⃗Þ ≃
Z

dωd2kgðk⃗; r⃗Þaðω; k⃗Þe−iωðt−t0Þ; ð2Þ

where the longitudinal component contributes only with a
phase factor that measures the longitudinal distance z ¼
cðt − t0Þ that the light travels from the source to the target,
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and back to the detector, and where the free-space
(transverse) transfer function is

gðk⃗; r⃗Þ≡
Z

d2roAðr⃗oÞeik⃗·ðr⃗0−r⃗Þ; ð3Þ

where A is the object transfer function and the integral is
over the (transverse) object plane, namely, r⃗o and r⃗ are two-
dimensional transverse vectors. We will consider a point-
like reflective object that reflects only the photons that
impinge on its position r⃗p. The other photons are lost. This
situation is described by a transfer function that has value a
in the vicinity of r⃗p in the object plane and value zero
elsewhere in the object plane, namely, Aðr⃗oÞ ∝
aδðr⃗o − r⃗pÞ. Slightly more general situations can be con-
sidered, but it is not possible to perform more complex
imaging with entangled light since the transfer function g of
any imaging apparatus is more complex than (3) and the
photon correlations in (4) (below) will prevent the for-
mation of a discernible image. For radar applications, we
are only interested in free-space propagation, described by
(3) for detection and ranging.
Interestingly, the pointlike approximation A ∝ δ can be

dropped without losing the quantum enhancement in the
regime where the light spatial bandwidth σψ is much larger
than the object dimension σA. In this case, the quantum
enhancement is present, but only up to a number of photons
Nmax ∼ ðσψ=σAÞ2. When a larger number is employed, the
quantum enhancement is lost: the classical unentangled
strategy yields the same precision (see the Supplemental
Material [14] for details). In the rest of the Letter, we retain
the pointlike approximation σA ≃ 0.
The necessary entangled two-photon state, produced at

the initial time t0, in the far field approximation, is

jψ2i≡
Z

dωd2kψðω; k⃗Þ½a†ðω; k⃗Þ�2j0i; ð4Þ

where a†ðω; k⃗Þ creates a photon with frequency ω and
transverse wave vector k⃗, ψ is the biphoton’s spatiotem-
poral wave function, and we omit the normalization since it
is a non-normalizable state as all Einstein-Podolsky-Rosen
states [19]. It is a maximally entangled state in three
different degrees of freedom: kx, ky, and ω (we will drop

this assumption later). The positive correlation in k⃗, ω in (4)
implies anticorrelation in the transverse position and time
of arrival. So, we can describe our radar protocol in the
“position representation” (see Supplemental Material [14])
by considering two photons that originate at opposite sides
of the target, hit the target at ρp, and end up at opposite
detectors at opposite times. We must suppose that at the
receiver’s location there is a negligible probability of seeing
the photons that are not scattered by the object, namely, (4)
is an approximation of the electromagnetic field valid only
in the object’s vicinity. This is implicit in the far field

approximation since the longitudinal component of k⃗3 is
directed away from the detector.
Replacing these quantities in Eq. (1), we find

pðt1; r⃗1; t2; r⃗2Þ ∝ jψ̃ðt1 þ t2 − 2t0; r⃗1 þ r⃗2 − 2r⃗pÞj2; ð5Þ
where ψ̃ðt; r⃗Þ ¼ R

dωd2kψðω; k⃗Þeiðωtþk⃗·r⃗Þ is the Fourier
transform of ψðω; k⃗Þ [20]. This implies that the average
time of the arrival is equal to the transit time of the signal
from its production at t0 to its detection at t,What is the time
t ¼ 0 physically? What is the time at which I start the
clocks at the detection?We cannot use the time at which the
signal interacts with the object as t ¼ 0, because that time
in unknown! No t ¼ 0, which I called t0 is the initial state
when the beam is created because we’re working in the
Heisenberg picture. and that the average arrival transverse
position is equal to the object’s transverse position. The
statistical noise of these two quantities is given by half the
standard deviation of jψ̃ j2 in time and in position. Indeed,
the left-hand side of (5) can also be written as
jψ̃f2½ðt1 þ t2Þ=2 − t0�; 2½ðr⃗1 þ r⃗2Þ=2 − r⃗0�gj2. Hence, the
standard deviation of the average time of arrival gains a
factor of 1=2 and similarly for each of the two components
of the average position.
We must compare this result to what one can obtain using

two unentangled photons with the same spectral character-
istics. Consider a single photon in the state

jψ1i ¼
Z

dωd2kψðω; k⃗Þa†ðω; k⃗Þj0i; ð6Þ

with same spectrum ψðω; k⃗Þ as in (4). The probability of
detecting it at time t at transverse position r⃗ is

pðt; r⃗Þ ∝ jh0jEþðt; r⃗Þjψ1ij2 ∝ jψ̃ðt; r⃗Þj2: ð7Þ

FIG. 1. Quantum radar setup (two-photon case). A pointlike
target reflects the momentum-entangled state jψ2i of two photons
(impinging dashed lines). In the far field, the photons arrive at a
screen. The average time of arrival (not pictured) provides the
longitudinal distance, whereas the average of the two photons’
transverse arrival positions r⃗1, r⃗2 provides the object’s transverse
location (dashed line). The uncertainty sphere obtained (dotted
line) is reduced by a factor N3=2 over what would be obtained
with N-independent photons with the same spatiotemporal
bandwidth (the case N ¼ 2 is depicted here).
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Clearly, a fair comparison must be between the two-photon
entangled strategy and an unentangled strategy that uses
two unentangled photons jψ1i ⊗ jψ1i. If each of the
unentangled photons provide an error equal to the standard
deviation of jψ̃ j2, the standard deviation of the average time
of arrival gains a factor of 1=

ffiffiffi
2

p
(as the variance of the sum

is the sum of variances) and similarly for each of the two
components of the average position. Thus, using the
entangled state jψ2i, the net gain is the square root

ffiffiffi
2

p
of the number of photons in the resolution along each of the
three spatial directions with respect to a strategy that
employs two unentangled photons jψ1i.
It is easy now to extend the above discussion to an

arbitrary number N of photons: the joint probability of
detecting them at time tj at transverse position r⃗j is

pðftj; r⃗jgj¼1;…;NÞ∝ jh0j
Y
j

Eþðtj; r⃗jÞjψNij2

∝ jψ̃
�X

j

tj−Nt0;
X
j

r⃗j−Nr⃗p

�
j2; ð8Þ

if one uses a far field N-photon entangled state

jψNi≡
Z

dωd2kψðω; k⃗Þ½a†ðω; k⃗Þ�N j0i; ð9Þ

which describes a state where the photons are highly
correlated, analogously to the two-photon case. Clearly,
(8) gives a distribution that has a standard deviation for
each position component and for the time of arrival that isffiffiffiffi
N

p
times smaller than the standard deviation obtained by

averaging N unentangled photons in the state jψ1i, with
arrival probability (7).
Intuitively, one expects that classical light with an

average photon number N will give a precision comparable
to the one of N-independent single photons with the same
spatial and temporal bandwidth. This is indeed true, as
demonstrated in the Supplemental Material [14], showing
that the

ffiffiffiffi
N

p
enhancement of the N-photon entangled state

demonstrated above is the same that is obtained also with
respect to a classical state with the same intensity.
We now discuss the feasibility of the experiment. For the

state jψNi, the arrival time tj and position r⃗j of each photon
is completely random. In fact, consider the case N ¼ 2:
jψ2i can be written also as

jψ2i ¼
Z

dt1d2r1dt2d2r2ψ̃ðt1 þ t2; r⃗1 þ r⃗2Þ

× a†ðt1; r⃗1Þa†ðt2; r⃗2Þj0i; ð10Þ

where we introduced into (4) the operator a†ðt; r⃗Þ ∝R
dωd2ka†ðω; k⃗Þeiðωtþk⃗·r⃗Þ that creates a photon at time t

and transverse position r⃗. Each of the two photons in (10)
taken by themselves can arrive at any time and at any

position, since the time and position difference have uni-
form probability amplitude. It is only the time and position
sums (or averages) that are peaked. Indeed, the probability
(5) depends only on the sums t1 þ t2 and r⃗1 þ r⃗2, so that
the differences t1 − t2 and r⃗1 − r⃗2 must be uniformly
distributed.
So, there are two main practical issues with this protocol.

On one hand, it is very demanding to produce the
maximally entangled states (4) and (9). On the other hand,
the complete randomness in arrival times and positions
requires an infinite measurement time and transverse
screen. Both of these problems can be overcome by
reducing the amount of entanglement among photons.
This, of course, will reduce the resolution gain, but it will
still allow for a better-than-classical enhancement. Again,
for the sake of illustration, we will consider the case N ¼ 2
first and then extend to arbitrary N.
Consider the partially entangled two-photon state

jϕ2i≡
Z

dωd2kdωdd2kdψðω; k⃗ÞγðωdÞξðk⃗dÞ

× a†ðω; k⃗Þa†ðωþ ωd; k⃗þ k⃗dÞj0i; ð11Þ

where ωd and k⃗d are the frequency difference and trans-
verse wave vector divergence between the two photons,
governed by the probability amplitudes γ and ξ, respec-
tively. The state jϕ2i can and has been produced in the lab
(see the Supplemental Material [14] for a review and the
bibliography). It is normalizable and tends to jψ2i in the
limit when γ and ξ tend to delta functions γ → δðk⃗pÞ and
ξ → δðωdÞ. Replacing jψ2i with jϕ2i in (1), we find

pðt1; r⃗1; t2; r⃗2Þ ∝ jψ̃ðt1 þ t2 − 2t0; r⃗1 þ r⃗2 − 2r⃗pÞj2
× jγ̃ðt2 − t0Þξ̃ðr⃗2 − r⃗pÞ þ γ̃ðt1 − t0Þξ̃ðr⃗1 − r⃗pÞj2; ð12Þ

where γ̃ and ξ̃ are the Fourier transforms of γ and ξ. In the
limit in which γ and ξ are deltas, then γ̃ and ξ̃ are uniform,
so the second line of (12) is a constant and we reobtain the
maximally entangled result of (5). In the intermediate case
(12) each of the photon’s time of arrival tj and transverse
position r⃗j is limited (in contrast to the maximally
entangled case), but the spread in their averages is
dominated by the product between jψ̃ j2 and jγ̃ ξ̃ j2. For
such nonmaximal entangled states (11), the standard
deviation of the average time of arrival gains a factor of
λ with 1=2 ≤ λ ≤ 1 and similarly for each of the two
components of the average position. When the bandwidth
of ξ and γ is larger than that of ψ , λ ≤ 1=

ffiffiffi
2

p
, it will always

achieve a better-than-classical enhancement both in time
and transverse positions.
The nonmaximally entangled N-photon version is

straightforward: the state and associated probability are
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jϕNi≡
Z

dωd2k
Y
j

dωjd2kjψðω; k⃗Þγðω1Þ � � � γðωNÞξðk⃗1Þ � � � ξðk⃗NÞa†ðω; k⃗Þa†ðωþ ω1; k⃗þ k⃗1Þ � � � a†ðωþ ωN; k⃗þ k⃗NÞj0i

pðftj; r⃗jgj¼1;…;NÞ ∝ jh0j
Y
j

Eþðtj; r⃗jÞjϕNij2 ∝ jψ̃
�X

j

tj − Nt0;
X
j

r⃗j − Nr⃗p

�X
j

Y
n≠j

γ̃ðtn − t0Þξ̃ðr⃗n − r⃗pÞj2; ð13Þ

for which considerations analogous to the case N ¼ 2 seen
above apply. The standard deviation of the average time of
arrival gains a factor of λ with 1=N ≤ λ ≤ 1 and similarly
for each of the two components of the average position. If
the bandwidth of ξ and γ is larger than that of ψ , λ ≤ 1=

ffiffiffiffi
N

p
,

it achieves a quantum enhancement in time and transverse
positions.
The ideal state jψNi and jϕNi for arbitrary N is actually a

state that is positively correlated both in frequency and
transverse momentum. For N ¼ 2, the state jψ2i has been
experimentally realized under a tightly focused pulsed
pump based on type II noncritical phase matching [21]
(reviewed in the Supplemental Material [14]). Pulsed
pumping can provide the bandwidth for the frequency
correlation, and a tightly focused process can modulate the
transverse momentum correlation.
We now consider the efficiency of the protocol. As

customary, we compared the quantum and classical pro-
tocols for the same number of resources employed in the
preparation. It is necessary to show a fair comparison for
the whole protocol, namely, also after detection. We cannot
directly compare the probabilities in (5) and (7), as (5)
refers to the un-normalizable state (4). One needs to
regularize such state, e.g., by using the normalized state
jϕ2i of (11) that gives probability (12). To compare these
two cases, consider a specific example in which we use
Gaussian weights for the regularizations γ and ξ with
variance σ2. In this case, the probability (12) is

pðt1; r⃗1; t2; r⃗2Þ ∝ σjψ̃ðt1 þ t1 − 2t0; r⃗1 þ r⃗2 − 2r⃗0Þj2; ð14Þ

whereas the probability of two single photons from (7)
gives pðt1; r⃗1; t2; r⃗2Þ ∝ jψ̃ðt1; r⃗1Þψ̃ðt2; r⃗2Þj2. So, a compari-
son between these two shows that the proportionality factor
in the probabilities is equal only when jψ̃ j2 is of the order of
σ. In this case, however, the quantum strategy is equivalent
to the classical strategy as discussed above. This implies
that, when using the state (11), a quantum advantage is
achievable only at the cost of a reduced efficiency. Whether
different entangled states (such as the nested ones proposed
below) can give a better resolution is currently unknown.
More details are in the Supplemental Material [14].
In this Letter, we are mainly concerned with proposing

the protocol in ideal conditions. However, it is important to
show that it can still give a quantum advantage when noise
is considered, for example, if some photons are lost at the

target (see Supplemental Material [14]). Our maximally
entangled protocol is extremely sensitive to noise, as
typically happens in quantum metrology: as is typical in
quantum metrology [22,23], the loss of a single photon will
render all the other N − 1 ones completely useless for the
estimation, since their times and positions of arrival are
completely random. Many different strategies that reduce
this effect at the cost of a decrease in resolution have been
proposed. For example, the partially entangled state jϕNi is
more robust to the loss of photons: those that do arrive still
contain some information on the object position. Moreover,
the strategies proposed in [10] can be adapted here: divide
the N photons into subsets of M entangled photons and
then entangle these subsets (a nested strategy). If one
photon is lost, only the photons of its subset become
useless, while those of the other subsets can still attain a
quantum enhancement. Other strategies involve the use of
quantum error correcting codes [24] or the use of external
ancillas [25]. Even without using these techniques, a
subshot noise sensitivity may still be achieved for a range
of parameters: the analysis of [8] (Chap. 5.2), can be
applied to our protocol, as the noise model is equivalent
(the protocol is not).
In conclusion, we proposed a quantum estimation for the

location of a target in three dimensions with a precision
increase equal to the square root of the number of photons
employed, when compared to the best unentangled strategy
using photons or classic light with equal energy and
spectral characteristics. Here we considered entanglement,
but squeezing would work similarly [26]. As a future
application, one might consider the extension of the
protocol to the localization in four-dimensional spacetime
to determine the spatial location and the time of an event.
Unfortunately such extension is nontrivial because in
electromagnetic waves the spatial and temporal degrees
of freedom are connected (they are constrained by being a
solution to a wave equation). So one would need a further,
independent, degree of freedom to use as a clock, in
addition to the photon’s spatial degrees of freedom that
we used here.
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