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Understanding deep learning is also a job for 
physicists
Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of 
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may 
help to bridge this gap.

Lenka Zdeborová

Imagine an event for which thousands of 
tickets get sold out in under 12 minutes. 
We are not speaking of a leading show 

on Broadway or a concert of a rockstar, but 
about the Conference on Neural Information 
Processing Systems (NeurIPS) — the 
principal gathering for research in machine 
learning and artificial intelligence. The 
fields related to automated learning from 
data are experiencing a surge in research 
activity, as well as in investment. This is 
largely thanks to developments in a subfield 
called deep learning, which has led to a 
myriad of successes in many applications1,2. 
Research in physics is no exception to this 
claim, and indeed in the recent years we 
have seen numerous applications of machine 
learning to various physics problems3,4, 
and even more predictions regarding 
which physics problems we will be able to 
solve with machine learning in the near 
future. Some even wonder whether future 
machine-learning systems will be able to 
collect suitable data and infer the laws of 
nature from them entirely automatically.

All this activity and progress naturally 
comes with many open questions — not 
least that deep neural networks are often 
described as black boxes: hard to interpret 
and without a solid understanding of 
when they provide satisfactory answers 
and when they do not. When applying 
machine learning to problems in physics 
(and other areas) researchers often wonder: 
What is the best way to take into account 
the corresponding domain knowledge, 
constraints and symmetries? How do we 
adapt the existing machine-learning tools 
to new problems, and how to interpret 
their results in a scientific manner? How do 
we reliably quantify the uncertainties and 
errors stemming from the fact that training 
and testing data may not come from the 
same source?

One might argue that researchers in 
mathematics, computer science, statistics 
and other related fields are working hard 
to answer such questions, and so for us 

physicists it is a matter of sitting tight 
waiting for tools and answers that we can 
subsequently put to use. In this Comment, I 
argue that, instead, we need to join the race 
of searching for these answers, because it 
is precisely the physicists’ perspective and 
approach that is needed to enable progress 
in this endeavour.

Three ingredients to decipher deep 
learning
The engineering details of current 
deep-learning systems, such as the ones 
deployed by Google to translate languages5, 
can be dauntingly complicated. Yet the basic 
principle of how learning with deep neural 
networks works is, in fact, pleasantly simple.

A basic example of a task in machine 
learning is supervised learning, where the 
machine learns to associate the correct 
outputs to input data, based on a database 
of examples of input–output pairs. Deep 
learning then uses multi-layer neural 
networks in which the input data are fed 
into the first layer, its output then fed as 
input into the next layer, and so on. Each 
layer is a multiplication of the input by a 
matrix of so-called weights, followed by a 
component-wise non-linear function. This 
is repeated a number of times corresponding 
to the number of layers.

For problems with binary output data 
(for example, 1 for a picture of a dog and 
−1 for a picture of a cat), the last layer then 
aims to find a hyperplane separating these 
output labels. This described structure 
is called a feed-forward fully connected 
neural network and is mathematically seen 
as a function of the input data outputting 
the labels and being parameterized by the 
matrices of weights. The weights are then 
adjusted using a simple gradient descent 
of a so-called loss function that quantifies 
the amount of mismatch between the 
current and desired outputs. Finally, the 
performance is evaluated against a so-called 
test dataset that was not seen during the 
training. Interestingly, the basic design 

principles of multi-layer neural networks 
have been known since the early days of 
research on artificial neural networks6. 
Arguably, the unprecedented engineering 
progress of the last two decades is largely 
due to better and larger training datasets 
and faster computing, such as highly 
parallelizable GPU processors, rather than 
due to fundamental improvements in 
the network architectures or the training 
algorithms themselves.

In 1995, the influential statistician Leo 
Breiman summarized three main open 
problems in machine learning theory7: 
“Why don’t heavily parameterized neural 
networks overfit the data? What is the 
effective number of parameters? Why 
doesn’t back-propagation — the term used 
for the gradient-descent-based algorithm 
used to train the state-of-the-art neural 
networks — get stuck in poor local minima 
with low value of the loss function, yet bad 
test error?” While Breiman formulated these 
questions 25 years ago, they are still open 
today and subject to most of the ongoing 
works in the learning-theory community, 
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Fig. 1 | Interplay of key ingredients. Building 
theory of deep learning requires an understanding 
of the intrinsic interplay between the architecture 
of the neural network, the behaviour of the 
algorithm used for learning and the structure in 
the data.
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including numerous papers and countless 
discussions at the NeurIPS conference.

Let us now try to clarify why the 
theoretical progress in understanding deep 
learning so difficult. When describing 
current deep-learning systems, the interplay 
of three key ingredients needs to be 
considered, as depicted in Fig. 1.

Architecture. As sketched out above, neural 
networks used in deep learning consist of 
multiple layers, with the number of layers 
known as the ‘depth’. Each layer has a certain 
dimension, called width, and is associated 
with a non-linear function, called activation. 
Layers are of different types, for example, 
fully connected or convolutional. One 
always needs to decide how to choose the 
depth, width, activations or types of layers, 
which determines the architecture of the 
neural network.

Algorithm. Given the data and the 
architecture of the network, one needs an 
algorithm to set the weight matrices so 
that the network outputs are the correct 
ones for previously unseen input data. This 
is most often done by the minimization 
of a function on the training set that 
quantifies the mismatch between current 
network outputs and the desired ones. The 
corresponding algorithm, widely known 
as back-propagation, is based on simple 
gradient descent of this function with 
respect to the weights.

Structured data. In supervised learning the 
training data consist of pairs of input data 
and labels. For instance, for classification 
of pictures of dogs and cats, one sample 
consists of one picture and one label that 
identifies whether the picture is a dog or a 
cat (for example, label 1 for a dog and −1 
for a cat). A neural network aims to learn 
the function from inputs to outputs, but 
crucially only on inputs that are of the same 
type as those in the training set. The input 
data are therefore not arbitrary vectors, 
but ones that have a particular structure, 
representing a picture of a cat or that of a 
dog in our example.

None of the above three ingredients 
can be excluded from consideration when 
building a theory. Indeed, the network 
architecture should have multiple layers 
because the empirical evidence for 
the superiority of such architectures is 
overwhelming. Concerning the algorithm, 
one clearly always needs to ensure 
computational tractability of the learning 
problem. In other words, it is not sufficient 
that there exists a set of parameters 
providing good performance, this set 
of parameters needs to be discoverable 

with efficient algorithms. Concerning 
the structure of the data, it is known that 
learning even simple neural networks 
is computationally prohibitive for the 
worst-case data8, thus there must be some 
property of the data that makes learning 
tractable.

These three ingredients — architecture, 
algorithm and structure of data — are 
intrinsically inter-dependent, since network 
architectures are chosen so that they 
represent the structure in the data in a way 
that is learnable with a given algorithm. 
There is a growing body of empirical 
and numerical evidence that the classical 
learning theory is not able to explain the 
observed behaviour9.

Where physics comes in
To illustrate the situation to a physics 
audience, one could compare the current 
state of deep learning theory to the physics 
theory of light and matter in the early 
twentieth century. There were a lot of results 
from experiments (such as the photoelectric 
effect, for example) that could not be 
explained by the existing theory — quantum 
mechanics was yet to be developed.

In my opinion, one key difficulty in 
developing a theory of deep learning stems 
from the fact that, on the one hand, the 
existing learning theory has very high 
standards of mathematical rigour, and on 
the other hand, the impressive empirical 
progress has so far been driven by the aim of 
decreasing the test error rather than by the 
aim of understanding what is going on.

One could perhaps compare this 
situation to a physics problem being 
attacked by a majority of researchers 
that were either mathematical physicists 
insisting on fully rigorous proofs or 
applied industrial-research colleagues 
whose primary aim is to deliver a product. 
While both these groups of colleagues are 
contributing immensely to the progress 
the field of physics is making, one could 
argue that, as for the famous example 
of quantum mechanics, we need the 
contributions of the experimentalists 
driven purely by the desire to understand 
nature and of the theoreticians aiming 
to explain those experiments by using 
scientifically sound and principled (but not 
necessarily fully mathematically rigorous) 
approaches. To understand deep learning, 
the machine-learning community needs 
to fill the gap between the mathematically 
rigorous works and the end-product-driven 
engineering progress, all while keeping the 
scientific rigour intact.

And this is where the physics approach 
and experience comes in handy. The virtue 
of physics research is that it strives to design 

and perform refined experiments that reveal 
unexpected (yet reproducible) behaviour, yet 
has a framework to critically re-examine and 
improve theories explaining the empirically 
observed behaviour.

In particular, the theoretical part of 
physics research is largely based on models. 
Models are a way of capturing the essence 
of a problem and stripping off the details 
that are not necessary to explain the 
experimental observations. An example 
would be the widely used Ising model of 
magnetism: it does not capture any details 
of the quantum mechanical nature of the 
magnetic interactions, and it also does 
not contain any details of any specific 
magnetic material, yet it explains the nature 
of the transition from a ferromagnet at 
low temperature to a paramagnet at high 
temperature.

And as it happens, physicists, particularly 
the community studying statistical mechanics 
of disordered systems, recognized the need 
for the modelling of machine-learning 
systems more than three decades ago. From 
a physics point of view, one aims to study 
a dynamical system with many interacting 
elements (weights of the network) evolving 
in structured quenched disorder (given by 
the data and the data-dependent network 
architecture). The pioneering works on the 
Hopfield model10,11 and on the perceptron 
model12,13 were followed by many others, 
reviewed in refs. 14–18. But these early works 
do not provide theory of deep learning 
because, going back to Fig. 1, they only 
consider unstructured input data, only 
shallow networks (at most two layers) and 
have not analysed in a closed form the 
gradient-based learning algorithms.  
With the successes and promises of deep 
learning and the theoretical questions 
that surround it, this direction of research 
has recently been picked up again. The 
same basic approach can be redeployed to 
answer the current questions, and to design 
experiments that would reveal more of 
unexpected behaviour and to explain it.

Only in the past year we have seen a 
range of events dedicated to these topics, 
where physicists and machine learning 
scientists have met and exchanged ideas. 
Notable examples include a program at the 
Kavli Institute for Theoretical Physics, UCSB 
(https://go.nature.com/2ygouAa), another 
program at the Institute of Pure & Applied 
Mathematics, UCLA (https://go.nature.
com/2APixvf), or workshops hosted by the 
leading machine learning conferences ICML 
and NeurIPS19,20. Ongoing related work is 
also covered in two recent review articles4,21, 
in a dedicated special issue of Journal of 
Physics A22, or in a collection of statistical 
physics related articles that were accepted 
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to one of the three leading and highly 
selective machine-learning conferences23. As 
physicists, let us embrace machine learning 
as the new tool in the box and let us use it 
widely and wisely. But let us also keep in 
mind that understanding why and how it 
really works requires physics methodology —  
we should not stand by as this formidable 
endeavour takes shape. So, let us embrace 
deep neural networks as a part of our field, 
and study it with the same unceasing desire 
that drives our quest to understand the 
world around us. ❐
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