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Topological defects determine the structure and function of 
physical and biological matter over a wide range of scales, 
from the turbulent vortices in planetary atmospheres, oceans 
or quantum fluids to bioelectrical signalling in the heart1–3 and 
brain4, and cell death5. Many advances have been made in 
understanding and controlling the defect dynamics in active6–9 
and passive9,10 non-equilibrium fluids. Yet, it remains unknown 
whether the statistical laws that govern the dynamics of 
defects in classical11 or quantum fluids12–14 extend to the active 
matter7,15,16 and information flows17,18 in living systems. Here, 
we show that a defect-mediated turbulence underlies the com-
plex wave propagation patterns of Rho-GTP signalling protein 
on the membrane of starfish egg cells, a process relevant to 
cytoskeletal remodelling and cell proliferation19,20. Our experi-
ments reveal that the phase velocity field extracted from Rho-
GTP concentration waves exhibits vortical defect motions 
and annihilation dynamics reminiscent of those seen in quan-
tum systems12,13, bacterial turbulence15 and active nematics7. 
Several key statistics and scaling laws of the defect dynamics 
can be captured by a minimal Helmholtz–Onsager point vortex 
model21 as well as a generic complex Ginzburg–Landau22 con-
tinuum theory, suggesting a close correspondence between 
the biochemical signal propagation on the surface of a living 
cell and a widely studied class of two-dimensional turbu-
lence23 and wave22 phenomena.

Topological defects are persistent discontinuities in the order-
parameter fields22,24 of continuum physical systems. Such defects 
critically determine the structure of fluids25,26, the rigidity of sol-
ids24,27 and the dynamics of biological matter5,6,28. The analysis and 
classification of topological defects offers a unified framework for 
comparing essential structural properties across a wide range of 
equilibrium and non-equilibrium systems, from point vortices11,21 
and vortex lines in water10,25,26, plasmas29 and quantum gases12,13,30,31 
to dislocations in crystals and disclinations in liquid crystals24. 
Recent experimental advances in the imaging of cells and tissues 
have revealed the importance of topological defects for a range of 
biological processes such as collective multicellular migration32, cell 
extrusion and death5, opening new pathways towards the engineer-
ing of biomimetic materials such as active liquid crystals28.

A particularly interesting class of dynamical defects that has 
profound implications for morphogenesis and complex biologi-
cal functions underlies the formation of spiral wave patterns in 
reaction–diffusion systems33,34. Extensively studied in Belousov–
Zhabotinsky35 and surface reactions36, spiral waves rotate around 
phase field defects and can exhibit complex state transition dynam-
ics37, chimaera behaviour38 and defect-mediated turbulence22,39. 

Topologically similar biochemical patterns have been shown to play 
important roles in many multicellular signalling and self-organiza-
tion processes in lower40 and higher1 forms of life. In the heart1–3 or 
brain4, for example, the presence of topological defects in the phase 
fields of bioelectrical signalling waves has been associated with 
arrhythmia and sleep-like states, respectively. However, despite such 
substantial progress in the understanding of topological defects and 
their functional implications, it is not yet clear whether statistical 
laws that govern such topological structures in classical11 and quan-
tum systems14,41,42 extend to living matter43.

To investigate this question in vivo, we examined the dynamics 
of self-sustained biochemical wave patterns on the oocyte mem-
branes of the starfish Patiria miniata. The starfish oocyte membrane 
is a two-dimensional (2D) excitable medium20, capable of sustaining 
self-organized waves of a membrane-bound signalling protein, Rho-
GTP (GTP, guanosine triphosphate), for tens of minutes (Fig. 1a).  
We imaged Rho-GTP using the enhanced green fluorescent  
protein/rhotekin GTPase binding domain (GFP-rGBD) biosensor 
(11 videos from 7 oocytes) and observed a variety of non-equilib-
rium steady states, four of which are shown in Fig. 1b (fluorescence 
intensity is proportional to the concentration of the Rho-GTP on 
the membrane; Supplementary Videos 1–4). Each of these steady 
states presents a different spatiotemporal wave pattern, with typical 
wavelengths ranging from 15 to 30 µm (Fig. 1c). As the Rho-GTP 
waves pass through a point on the 2D membrane, they produce 
an oscillatory fluorescent intensity signal that is recorded on the 
microscope camera pixel (resolution of 0.6 µm) monitoring that 
membrane position (Extended Data Fig. 1a). The pixel oscilla-
tion periods for different waves ranged from 50 s to 120 s (Fig. 1d).  
From the time series of pixel intensity oscillations one can extract 
the relative phases across the membrane using a time-delay embed-
ding algorithm1 (Extended Data Fig. 1 and Methods). This analy-
sis yields the phase field ϕ(x, t) associated with the Rho-GTP  
concentration field.

The phase field ϕ(x, t) harbours a dense population of topologi-
cal defects (Fig. 1e). Such phase defects are singular points where 
neighbouring phase values jump discontinuously. The defects can 
be characterized by analysing the local wavevector field, defined as 
the gradient of the phase field Vϕ(x, t) = ∇ϕ(x, t) (Fig. 2a(iii)). The 
topological charge of a defect is given by the integer-valued wind-
ing number, Γ ¼ 1

2π

H
C∇ϕ  ds

I
, where C is a closed contour around 

the defect that encloses no other defects. The phase field defects 
observed in our experimental data generally have winding numbers 
of +1 or −1, corresponding to counterclockwise or clockwise rotat-
ing local phase field dynamics (Fig. 1f and Supplementary Video 5).  
We find that, within the field of view (~300 µm × 300 µm) and 
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Fig. 1 | Topological defects populate the phase field of rho-GTP waves on the starfish oocyte membrane. a, Membrane Rho-GTP waves are visualized 
with GFP-rGBD reporter in live starfish oocytes. Oocytes are confined in elliptical polydimethylsiloxane (PDMS) chambers to minimize sample drift during 
time-lapse imaging. Inset: cycling of Rho protein between the GTP-bound (active) state on the membrane and guanosine diphosphate (GDP)-bound 
(inactive) state in the cytosol. GeF is the guanine nucleotide exchange factor and GAP is the GTPase-activating protein. b, Representative snapshots of 
Rho-GTP waves from four oocytes at different steady states. Scale bar, 15 µm. c, normalized intensity cross-correlation plotted as a function of distance 
for the four states shown in b. error bars represent s.e. throughout time. d, Representative time series of fluorescence intensity at the single pixel level for 
the four states shown in b (colours of lines match the outlines of the images in b). e, A representative phase field reconstructed from pixel oscillations 
harbours a dense population of topological defects. The defects in the red and blue squares have winding numbers +1 and −1, respectively. Scale bar, 
15 µm. f, Time-lapse snapshots of the phase field in the vicinity of a topological defect every 10 s. The +1 and −1 defects exhibit counterclockwise and 
clockwise rotating dynamics, respectively. g, Trajectories of defects undergoing creation (black) and annihilation (grey) events. Both types of events 
always involve pairs of oppositely charged defects (red, +1; blue, −1). Scale bar, 10 µm. h, The defect density fluctuates about a constant value at  
steady state. i, Characteristic wave numbers are positively correlated with defect density for all 11 states. error bars represent s.d. Dashed line is the  
line of the best fit.
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observation period (~100 s), the mean square displacement of the 
defects’ motions scales approximately linearly with time (Extended 
Data Fig. 2a). In each individual experiment, we observe approxi-
mately the same numbers of positive and negative defects in the 
field of view (Extended Data Fig. 2b). Localized creation and anni-
hilation events always involve pairs of oppositely charged defects 
(Fig. 1g and Supplementary Video 5), resulting in conservation of 
the total topological charge. Continual pair creation and annihila-
tion causes the defect number density to fluctuate around a constant 
local mean value (Fig. 1h). Despite the differences in the spatiotem-
poral wave patterns, the fraction of creation and annihilation events 
(compared to total defect number) is ~10% in all states (Extended 
Data Fig. 2c,d) and defect lifetimes are exponentially distributed 
(Extended Data Fig. 2e). The local mean values of defect densities 
decrease for larger pattern wavelengths (Fig. 1i and Extended Data 
Fig. 3), consistent with previous reports for cortical maps44. These 
results point toward the possibility that generic mechanisms under-
lie defect dynamics in the biochemical signalling protein pattern on 
the membrane of the oocytes.

The local wavevector field, Vϕ(x, t) = ∇ϕ(x, t) is proportional to 
the velocity at which the information encoded in Rho-GTP concen-
tration waves propagates on the 2D membrane (Fig. 2a(iii)). In anal-
ogy to 2D quantum superfluids in Bose–Einstein condensates12,13,31,45, 
one can interpret Vϕ as an effective velocity field describing a poten-
tial flow with vorticity ω = ∇ × Vϕ localized at point-like vortex cores 
(Fig. 2a(iv)); in this framework, the Rho-GTP diffusion constant 
plays the role of ℏ=m

I
 in quantum fluids to convert Vϕ to a velocity.  

The phase field defects of charge +1 or −1 map to centres of coun-
terclockwise or clockwise vortices in the Vϕ field, respectively 
(Fig. 2a). The system exhibits turbulent behaviour, character-
ized by a weakly correlated distribution of a large number of vor-
tices and antivortices of unit winding (Fig. 2a(iv)). We quantified 
the relative fraction of persistent dipole pairs for each steady state 
(Supplementary Video 6 and Methods). All steady states are charac-
terized by a low fraction of bound vortex–antivortex pairs (~20%), 
reminiscent of the disordered phase in a Berezinskii, Kosterlitz 
and Thouless (BKT) topological phase transition (Fig. 2b)46.  
We did not observe evidence of same-sign clusters or super conden-
sates in any of our experimental steady states (Extended Data Fig. 2f 
and Supplementary Video 6). A further analysis of the global proper-
ties of the phase gradient field, Vϕ, reveals a linear scaling between 
the effective kinetic energy, �E ¼ hjVϕj2i

I
, and effective enstrophy, 

�Ω ¼ hω2i
I

 (Fig. 2c, Extended Data Fig. 4 and Methods), in agree-
ment with recent reports for bacterial turbulence15. We next focus 
on the velocity statistics of the individual defects, which are signifi-
cantly affected by vortex pair collisions. The analysis of radial and 
tangential components of the velocities of vortex pairs as a func-
tion of distance (before collision) reveals the length scale of transi-
tion from many-body to two-body interactions, ~5 µm (Fig. 2d),  
consistent with the length scale we extract from the linear relation 
between effective kinetic energy and effective enstrophy (Fig. 2c). By 
tracking pairs of nearby vortices on the oocyte membranes, we found 
that vortices accelerate substantially as their separation decreases 
and streamlines become compressed (Fig. 2e,f, Extended Data Fig. 5  
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Fig. 2 | Vortex dynamics in the phase velocity field. a, Different dynamical fields underlie self-sustained Rho-GTP waves in starfish oocyte membrane (i).  
From the constructed phase field ϕ(x, t) (ii), the phase velocity field, Vϕ(x, t) = ∇ϕ(x, t) (iii) can be computed. Vortex dynamics in the phase velocity 
field is visualized using a vorticity contour line (iv). b, Relative fraction of persistent dipole pairs for all 11 states, showing signatures reminiscent of a low-
energy BKT phase. error bars represent s.d. throughout time. The dashed line represents the mean fraction averaged over the 11 states. c, Mean effective 
kinetic energy, �E, for each of the 11 states shown in Fig. 1i plotted against their respective mean enstrophy, �Ω

I
. The dashed line is the best linear fit. error 

bars represent standard deviation. d, Relative tangential and radial components of velocity and speed of pairs of vortex–antivortex plotted as a function of 
distance. each point averages pairs across 11 states at the same frame before annihilation (in total 6,224 annihilating pairs across 11 steady states). error 
bars represent standard error. The shaded area denotes the transition of many-body to two-body interactions. e, Time-lapse snapshots of phase velocity 
field streamlines, coloured by circulation direction, in the vicinity of a pair of defects during an annihilation event. Scale bar, 2 µm. f, Mean pairwise distance 
and mean relative velocity of vortex–antivortex pairs plotted as a function of time before annihilation. The shaded regions represent standard deviation.
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and Supplementary Video 5). Such encounters and annihilation 
events give rise to a noticeable tail in the experimentally measured 
defect speed distributions (Fig. 3a). At high velocities, these tails 
decay approximately as v−3, in agreement with recent theoretical  
predictions for generic vortex interactions47,48. To characterize the 

vortex size statistics, we constructed a Voronoi tessellation centred 
around the topological defects in the phase field (Fig. 3b and Extended 
Data Fig. 6). The experimentally measured area distributions of the 
Voronoi cells exhibit an exponential decay, as also predicted recently 
for turbulent active nematics7. Taken together, our data suggest that 
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essential aspects of the defect statistics characterizing the complex 
dynamics of membrane Rho-GTP waves on the oocyte membrane 
can be understood in terms of generic 2D defect–defect interactions.

To further test this hypothesis, we compared our experimental 
results with simulations of the discrete Helmholtz–Onsager (HO) 
point-vortex model21 and a complex Ginzburg–Landau (CGL) con-
tinuum theory22. The CGL model presents a generic continuum 
theory to describe nonlinear waves and defect turbulence in non-
equilibrium systems31, and can be derived from a simplified Rho-
GTP reaction-kinetics model (Supplementary Information). The 
HO model provides a widely studied minimal Hamiltonian dynam-
ics framework for 2D vortex motions11 with logarithmic pair inter-
action potential. Mathematically, it is directly related to solutions 
of the Euler equations describing 2D classical turbulence, and it 
has been successfully applied recently to describe the experimen-
tally observed vortex dynamics in 2D Bose–Einstein condensates31. 
Relevant to the parameter regime realized in our experiments (see 
Supplementary Information), the HO model also provides a near-
field approximation (see Supplementary Information) to the CGL 
spiral defect dynamics49.

We simulated both models by approximating the oocyte surface 
with a spherical domain. For the HO model, we numerically solved 
the Hamiltonian equations of motion50 of N vortices with circula-
tions Γi = ±1, and transformed the simulation data into phase field 
data (Fig. 3g, Extended Data Fig. 7 and Methods). Simulations 
of the CGL model directly yield the phase field from the polar 
representation of the complex order parameter (Fig. 3h and 
Methods). By performing numerical parameter scans, we mapped 
the experimentally observed wave patterns to the corresponding 
states in the CGL phase diagram (Fig. 3i, Extended Data Fig. 8 and 
Supplementary Information).

A comparison with the experimentally measured phase fields 
shows that the best-fit CGL models reproduce essential aspects of 
the spiral wave morphology of the Rho-GTP waves (Fig. 3i). By con-
trast, the near-field HO description cannot account for details of the 
spiral wave morphology (Fig. 3g). Nevertheless, both models exhibit 
defect vortex speed statistics (Fig. 3c,e) and Voronoi tessellation area 
statistics (Fig. 3d,f) similar to those observed in our experiments 
(Fig. 3a,b). Test simulations replacing the logarithmic HO potential 
with a Bessel function, as typically used to describe intermediate- to-
long-range spiral core interactions49,51, also yielded similar statistics 
(Extended Data Fig. 9 and Supplementary Information). The tails of 
the defect speed distributions for the HO point-vortex model depend 
on the total energy in the system (Fig. 3c), whereas the CGL model 
displays nearly identical vortex speed statistics when the complex 
diffusion parameter is varied in the defect-mediated turbulence 
regime (Fig. 3e and Methods). Within the limitations of our micro-
scope field of view and resolution, the approximately cubic asymp-
totic decay observed both in the experiments (Fig. 3a) and CGL 
simulations (Fig. 3e) agrees with recent theoretical predictions for 
random point-vortex configurations52. For the HO model (Fig. 3c), 
slopes close to v−3 are found only for subcritical to critical energies 
below the vortex condensation transition, consistent with the obser-
vation of weak BKT-type dipole signatures46 in our experimental vor-
tex tracking data (Fig. 2b, Extended Data Fig. 2f and Supplementary 
Video 6). In the experiments as well as simulations, the distribu-
tions of the Voronoi cell areas collapse after normalization by the 
mean area, and their tails show an approximately exponential decay  
(Fig. 3b,d,f and Extended Data Fig. 10), in agreement with predic-
tions for defect turbulence in active nematics7. Taken together, the 
statistics observed in the experiments and CGL simulations support 
the hypothesis that the Rho-GTP dynamics on the 2D oocyte mem-
brane realizes a state of defect-mediated turbulence22. The turbulent 
non-equilibrium dynamics on the 2D membrane is maintained by an 
active energy input from the underlying bulk cytoplasm20 in the form 
of adenosine triphosphate (ATP) and GTP hydrolysis. Conceptually, 

this ATP/GTP-mediated driving process plays a role similar to that of 
Gaussian or spectral forcing in 2D atmospheric turbulence53.

In conclusion, our results reveal interesting parallels between the 
phase field defects in Rho-GTP concentration waves on the starfish 
oocyte membrane, generic Ginzburg–Landau theories and point 
vortices in 2D Bose–Einstein condensates12,31. A future challenge 
will be to investigate whether biochemical signalling systems can 
intrinsically or externally (for example, with optogenetic tools for 
light activation of Rho-GTP regulatory proteins) be driven close 
to, or even past, the critical phase transition regime that separates 
low-energy turbulent spiral-vortex dynamics from high-energy 
vortex condensation46. From a broader conceptual perspective, it 
will be intriguing to explore further the similarities and differences 
between topological defect dynamics and information propagation 
in living and non-living systems.
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Methods
Starfish oocyte preparation. Patiria miniata starfish were procured from South 
Coast Bio-Marine. The animals were kept in a salt-water fish tank maintained  
at 15 °C. The ovaries were extracted through a small incision made at the bottom of 
the starfish. The ovaries were carefully fragmented using a pair of scissors to release 
the oocytes. Extracted oocytes were washed twice with calcium-free seawater 
to prevent maturation and incubated in filtered seawater at 15 °C. Our dataset 
includes seven oocytes from two different batches. All experiments were performed 
within three days of oocyte extraction.

In vitro synthesis of mRNA and microinjection. Two constructs were used in this 
study. The fluorescently labelled rhotekin binding domain construct, eGFP-rGBD, 
was purchased from Addgene, deposited by William Bement54. The fluorescently 
labelled Ect2-T808A-mCherry construct, a mutant that is desensitized to one 
particular Cdk1 phosphorylation, which otherwise limits membrane association 
during the M-phase, was a gift from G. von Dassow. For in vitro synthesis of 
mRNA, we first amplified the constructs by bacterial growth overnight. The 
plasmids were then purified using Miniprep (Qiagen) and linearized using the 
appropriate restriction enzymes. Both eGFP-rGBD and Ect2-T808A-mCherry 
mRNA were synthesized using the SP6 mMessage mMachine transcription kits 
(Thermo Fisher Scientific). To express the constructs, the synthesized mRNA was 
microinjected into the cytoplasm of the oocytes and incubated overnight at 15 °C.

PDMS chamber. Microfabricated chambers were fabricated by casting gas-
permeable PDMS onto patterned silicon wafers. The chamber shapes were 
designed with a height of 80 µm and surface area of ~27,000 µm2, to match 
typical volumes of the oocytes. The patterned silicon wafer was manufactured 
using photolithography (Microfactory SAS). The silicon wafer was silanized with 
trichlorosilane (Sigma 448931). PDMS was made by mixing Dow SYLGARD 184 
Silicone Elastomer Clear solution at a 10:1 base-to-curing agent ratio. After mixing 
thoroughly, the elastomer was poured over the silicon master mould, degassed in a 
vacuum chamber and cured at 60 °C in oven for an hour.

Confocal imaging. Fluorescence imaging of rGBD-GFP was performed on a Zeiss 
700 laser scanning confocal system. The system consisted of a Zeiss AxioObserver 
motorized inverted microscope stand and three photomutiplier detectors. Images 
were acquired using a ×40/NA 1.3 oil Plan Apochromat objective with appropriate 
laser line and emission filter, in a microscope room maintained at 20–22 °C.

Calculation of the phase field. We constructed the full phase field ϕ(x, t) by 
calculating the phase at each individual pixel as a function of time, ϕ(t), over the 
entire 2D video image parameterized by x. The fluorescence intensity time series 
at single pixels I(t) is oscillatory. The phase can be determined by plotting the 2D 
phase portrait of I(t + τ) versus I(t) (Extended Data Fig. 1b)1. To correct for varying 
background intensity, we defined the mean subtracted signal as ~I tð Þ ¼ I tð Þ � I tð Þ

I
.  

�I tð Þ
I

 is the mean intensity calculated over a sliding window of length w = 15. 
The phase is then computed as ϕ tð Þ ¼ tan�1ð~I t þ τð Þ;~I tð ÞÞ

I
. We chose τ to be 

approximately a quarter of the signal’s wave period. To smooth out the noise, we 
applied a Gaussian filter with a radius of one pixel to obtain the final phase field.

Calculation of normalized intensity cross-correlation and pattern wavelength. 
The normalized intensity cross-correlation C(R), as a function of the two-point 
distance R, was calculated from C Rð ÞT¼ hÎðxiÞ  ÎðxjÞi=ðσ ÎðxiÞ  σ ÎðxjÞÞ

I

 for time 
T throughout the steady state. Pixel position pairs (xi,xj) satisfying |xi − xj| = R 
were collected by first randomly selecting 1,000 pixels on the x–y plane as xi, 
then gathering all the pixels that fall on the ring centred at xi with radius R as xj. 
Pixel intensity values of the pairs, Î xið Þ; Î xj

� �

I
, were acquired from background 

subtracted images (see section ‘Background subtraction’). The intensity cross-
correlation was normalized by the standard deviation of sampled intensity value 
collections, σ Î xið Þ

I
 and σ Î xjð Þ

I

. Discontinuous two-pixel distance R was sorted into 
1 μm bins when plotting C(R) in Fig. 1c and Extended Data Fig. 3a. The wavelength 
extracted from patterns at time T (Extended Data Fig. 3b) was defined as the 
position of the first peak in the C(R)T curve.

Calculation of energy spectrum and pattern wavenumber. Energy spectrum 
E(k)T at every time T was also calculated from the intensity field Î xð Þ

I
 (see section 

‘Background subtraction’). 2D fast Fourier transformation of Î xð Þ
I

, S(k), was 
calculated using MATLAB function ‘fft2’ for the max square region centred 
at each pattern. The energy spectrum E(k) is given by E(k) = S*(k)S(k). The 
zero wavenumber value in E(k) was removed (Extended Data Fig. 3c). The 1D 
energy spectrum p(k) was calculated by integrating along the angular direction: 
p kð Þ ¼ P

k0 Eðk0Þδð k0j j ¼ kÞ
I

. We defined the characteristic wavenumber 
as the mean wavenumber weighted by normalized 1D energy spectrum, 
�k ¼

R k0
0 k  p kð Þdk=

R k0
0 p kð Þdk

I
. Wavenumber cutoff was set to 0.2 μm−1 for all 

patterns (Extended Data Fig. 3d).

Background subtraction. A mean intensity value hIi ¼ Iðx; tÞh ix;t
I

 was subtracted 
from every video. The background subtracted intensity field Î x; tð Þ ¼ I x; tð Þ � hIi

I
 

was used in calculating the characteristic pattern wavelength and wavenumber.  
For data sets with significant spatially extended bright fluorescence patches  
(2 out of 11), we invert the intensity field to more accurately extract the length 
scale. The background subtracted intensity field Î0 xð Þ

I
 was then defined as 

Î0 xð Þ ¼ maxðÎ0 � Î xð Þ; 0Þ
I

, where Î0 is the mean intensity of fluorescence at the 
edge of bright patches.

Determination and tracking of phase singularity. To determine the position of 
the phase singularities, we scanned through the entire image and computed the 
line integral 

H
∇ϕ xð Þ  ds
I

 for every two-by-two local window. Plus (minus) phase 
singularities have a value of 2π (−2π). We identified the positions of the phase 
singularities independently in each time frame. Once the phase singularities 
were obtained, the trajectories were constructed using particle tracking software 
with a gap-closing algorithm (developed by J.-Y. Tinevez). The software is based 
on the Munkres/Hungarian algorithm and is available from the FileExchange 
on the MathWorks website (https://www.mathworks.com/matlabcentral/
fileexchange/34040-simple-tracker).

Calculation of phase velocity, vorticity, effective kinetic energy and effective 
enstrophy. The phase velocity was calculated by taking the gradient of the phase 
field Vϕ(x, t) = ∇ϕ(x, t). Vorticity ω(x, t) = ∇ × Vϕ(x, t) was computed using 
MATLAB’s curl function. The effective kinetic energy was calculated by averaging 
over all phase velocities squared �E ¼ Vϕðx; tÞ

 2
D E

I

. Here, ¼h i
I

 denotes a spatial 
and temporal average. Effective enstrophy was calculated by averaging over all 
vorticities squared �Ω ¼ ωðx; tÞj j2

� �

I
. Although the spatial averages E(t) and Ω(t) 

fluctuate, their time averages �E and �Ω are approximately constant over the time 
interval used in data analysis (Extended Data Fig. 4). Streamline visualization of 
the phase velocity field was realized using the Python software package ‘Streamplot’ 
available in matplotlib library55.

Determination of dipole pairs and clusters. We first categorized all  
defects into dipole, cluster or free vortex state using the clustering algorithm 
outlined in ref. 56. Briefly, at each time frame, defects can be categorized  
as one of three cases:

 1. Dipole, if a pair of +1 and −1 defects are mutual nearest (opposite-sign) 
neighbours

 2. Cluster, if there exist same-sign neighbours that are nearer than the nearest 
opposite-sign neighbour

 3. Free vortex, if the nearest opposite-sign neighbour belongs to another dipole 
or cluster and there are no same-sign neighbours that are nearer

To calculate the relative fraction of persistent dipole pairs, we only consider 
dipole pairs that persist for three frames or more.

Distribution of normalized instantaneous speeds. Instantaneous defect speed 
was calculated as v(t) = |x(t) − x(t − Δt)|/Δt, with Δt being the video’s time 
resolution. An ensemble of defect velocities was constructed by taking every 
instantaneous v(t) of all defect trajectories over the entire video. The normalized 
speed was computed by scaling the defect speed with the mean value of the 
ensemble, ~v ¼ v=v

I
. The normalized speed distribution Pð~vÞ

I
 was then plotted using 

MATLAB’s histogram function for every steady-state pattern. The distributions 
of the 11 states (Fig. 3a) were plotted by averaging the values of Pð~vÞ

I
 within each 

~v bin. The power-law scaling spanning across ~v from 0.1 to 6.5 is robust against 
changes in binning width Δ~v

I
.

Calculation of the relative velocity between a pair of vortices. We characterized 
annihilation events by identifying pairs of oppositely charged vortices that 
disappeared simultaneously between the same two frames and had their last 
observed locations within 10 pixels in distance. The time zero (Fig. 2d,e and 
Extended Data Fig. 5) for the annihilation events was defined as the last observed 
frame of annihilating pair vortices. At every time point t, the relative speed 
between pair vortices was computed from the positions of the current frame and 
the frame before, vrel(t) = |(x+(t) − x+(t − Δt)) − (x−(t) − x−(t − Δt))|/Δt.  
Pairwise distance was calculated from the position of the current frame, 
d(t) = |(x+(t) − x−(t))|. Radial relative velocity was defined such that the radial 
velocity is positive if it points to a decrease of pairwise distance; tangential relative 
velocity was defined such that counterclockwise rotating tangential velocity is 
positive (Fig. 2d, inset).

Voronoi tessellation area distributions. We used the default MATLAB function 
‘voronoin’ in the ‘Computational Geometry’ toolbox to calculate Voronoi 
tessellations of point vortices at every time frame. Only tessellations with edges 
not crossing the boundary of the steady-state pattern were used to calculate area 
statistics. We computed the probability distribution in Fig. 3b using all tessellation 
areas throughout every steady-state pattern. For each pattern, the normalized 
tessellation area was computed by multiplying by the pattern’s time-averaged 
vortex area density. This is effectively normalizing the tessellation area by the mean 
area taken up by a single vortex (Fig. 3b, inset). The combined distribution was 
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calculated by averaging histogram counts inside each normalized area bin for the 
11 steady states.

Onsager model simulations. The Onsager, or point-vortex, model is a simplified 
Hamiltonian model of interacting vortices in two dimensions11. The state of the 
system is entirely determined by the positions of N vortices, with two spatial 
degrees of freedom for each vortex conjugate pair. To be topologically consistent, 
a variant of the model embedded on the surface of a unit sphere was chosen50. 
Under these conditions, vortex–vortex interactions are logarithmic, with the 
Hamiltonian given as

H ¼ � 1
4π

X

j≠k

ΓjΓklog
xk � xj
 

2

 
þ const:

where |xk − xj| refers to the chord distance in R3

I
. The constant term varies with the 

circulation strength Γi and with N, but is independent of the specific configuration 
and thus does not influence the dynamics. The equations of motion for the kth 
particle are given as

_xk ¼
1
4π

X

j≠k

Γj
xj ´ xk

1� xj  xk

Simulations were performed by numerically integrating via a fourth-order 
Runge–Kutta scheme, based on a publicly available MATLAB implementation57. 
In all simulations, vortex circulations Γi are evenly split between +1 and −1. Each 
vortex is assigned an initial position at random based on a uniform distribution 
over the surface of the sphere. To create a simulation with a desired total energy 
E0, random initial conditions were continually sampled until a configuration with 
|E − E0| < 0.1 was produced. From initiation, the system was evolved for T = 1,000 
according to the equations of motion, with dt = 0.01.

CGL simulations. The CGL is a universal model describing the spatiotemporal 
evolution of continuum systems near the critical point of a Hopf bifurcation. 
Among its many applications, it has been widely used in the study of wave 
behaviour in reaction–diffusion systems22. The basic form of the equations is

∂tA ¼ D 1þ ibð Þ∇2Aþ A� 1þ icð Þ Aj j2A

We simulated the behaviour of this system on the unit sphere using the open-
source Spherefun library58. For the simulations shown in the Extended Data Fig. 8, 
we chose D = 10−4, while b and c were varied to explore a variety of different spiral 
wave regimes. In all simulations, we used a time step of dt = 0.1 and N = 256 grid 
points (see Spherefun documentation for details58). Simulations were begun with 
random initial conditions, and each lasted until T = 4,000, which in all cases was 
sufficient to ensure the emergence of a steady state.

Pattern matching between CGL and experimental data. To systematically 
compare the experimental and numerical results in Fig. 3i, the following procedure 
was employed. For each point in the CGL parameter space, a simulation was run 
on a 500 × 500 grid until steady state was reached. Via Fourier transform, the 2D 
k-space representation of the CGL phase field ~ϕ kx ; ky

� �

I
 was calculated. From this 

field, we calculated a series of 20 moments, defined as

Msimulation;i
nx ;ny ¼ 1

ϕ0

Z
knxx k

ny
y j~ϕ kx ; ky

� 
jdkxdky

  1
nxþny

where the normalization factor is given by ϕ0 ¼
R
~ϕ kx ; ky
� 

dkxdky
I

. Via the 
same procedure, equivalent moments Mexperiment;j

nx ;ny

I
 were calculated for each of 

the 11 experimental steady states previously analysed. To calculate which CGL 

simulation most closely matched the experimental state, we calculated a fitting 
score defined as

fij ¼
X

nx ;ny

Msimulation;i
nx ;ny

Mexperiment;j
nx ;ny

� 1





In Fig. 3i, and in Extended Data Fig. 8, each experiment is matched with the 
simulation which minimized the above scoring function.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
All data that support the plots within this paper and other findings of this study are 
available from the corresponding authors upon reasonable request.

code availability
The algorithms and simulations codes are described in the Methods and 
Supplementary Information.
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Extended Data Fig. 1 | Visualization of phase determination at single pixel level. a, Fluorescence intensity at each individual pixel, I(t) is oscillatory. The 
gray dotted line is the mean intensity �I tð Þ

I
. b, Phase from oscillation can be determined by plotting the two dimensional phase portrait of I(t + τ) versus I(t). 

See Methods for more details.
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Extended Data Fig. 2 | statistical characterization of defect dynamics. a, Mean squared displacement of defects plotted as a function of lag time τ. 
Dotted line has a slope of 1. b, Defect charge imbalance, quantified using the metric (Np−Nm)/Nt, is plotted as a function of time. Here, Np, Nm, and Nt 
denotes the number of +1, -1, and total defect respectively. (c,d), Fraction of creation (on, c) and annihilation (off, d) events normalized by total defect 
number Non/Nt and Non/Nt plotted as a function of time for all 11 states. e, Distribution of +1 and -1 defects lifetime for all 11 states. f, Relative fractions of 
persistent dipole (purple), transient dipole (blue), cluster (orange) and free vortex (yellow) for all 11 states identified according to the clustering algorithm 
as described in Methods.
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Extended Data Fig. 3 | extracting characteristic wavelength and wave number from steady state patterns. a, normalized intensity cross-correlation 
curves for 11 patterns. Shaded region: Standard error throughout time frames. b, Characteristic wavelength inversely correlates with defect density. error 
bar: Standard deviation of quantities throughout time frames. Dashed line is the best linear fit. c, example 2D energy spectrum from one pattern snapshot. 
Heat map color was scaled logarithmically for optimal visualization. d, normalized 1D energy spectrum used to calculate the characteristic wave number 
shown in Fig. 1i (inset).
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Extended Data Fig. 4 | Time series of effective kinetic energy and effective enstrophy. a, effective kinetic energy E(t) plotted as a function of time.  
b, effective enstrophy Ω(t) plotted as a function of time.
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Extended Data Fig. 5 | Streamlines of phase velocity field are deformed during an annihilation event.
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Extended Data Fig. 6 | Defect speed and Voronoi tessellation distributions. a, Defect speed statistics for 11 states, as plotted in Fig. 3a. b, Voronoi 
tessellation area statistics for 11 states, as plotted in Fig. 3b. c, normalized area distribution of Poisson Voronoi cells (blue dashed), hyperuniform Voronoi 
cells (orange) on a sphere, and defect Voronoi cells (black, same as in Fig. 3b). d, and e, Voronoi area distribution for Poisson (d) and hyperuniform points 
(e) for point density Λ = 100, 200,…, 1000 obtained by averaging N = 10000 and N = 1000 realizations respectively. Insets: Snapshot of a Poisson 
Voronoi distribution (d) and hyperuniform Voronoi distribution (e).
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Extended Data Fig. 7 | Helmholtz-Onsager point vortex simulation at high and low energies. example of Voronoi cells (left) and phase fields (right) for 
additional energy values, as in Fig. 3g, corresponding to the red (high energy) and blue (low energy) lines in Fig. 3c. In the high energy regime, like-charge 
vortices cluster, while opposite charge vortices form pairs in the low energy regime.
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Extended Data Fig. 8 | Morphologies of spirals in cGL parameter space. Snapshots of spiral reaction diffusion waves taken at steady state for various 
values of b an c. Simulations here were done on a 500 ×500 grid, but in all other respects are the same as described in the Methods section. Images are 
from time T = 400. Insets correspond to experimentally observed morphologies, matched according to the procedure described in Methods.
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Extended Data Fig. 9 | speed statistics for defects interacting pairwise with a Bessel-form potential. a, Probability distribution of normalized defect 
speed at three different energy levels (sub-critical, critical, super-critical). b, Mean defect scalar velocities as a function of total energy, scaled by the 
energy difference compared to the critical state. error bars correspond to variance in speed for individual defects.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Mean statistics of vortex speed and area for experimental and simulated states. a, Mean vortex speeds for each experimental 
state used to normalize speed (extended data Fig 6a) to obtain Fig. 3a. error bars correspond to variance of speed distribution. b, Mean Voronoi 
tessellation areas for each experimental state used to normalize Voronoi tessellation areas (extended data Fig 6b) to obtain Fig. 3b. c, Mean speed of 
vortices in point-vortex model as a function of deviation from critical energy. error bars correspond to variance of speed distribution. d, Mean Voronoi 
tessellation areas used to normalize main text Fig. 3d. error bars show variance of single particle area distribution. e, Mean vortex speeds for CGL 
simulations as a function of parameter b and c. error bars correspond to variance in speed for individual vortices. f, Mean Voronoi tessellation areas for 
CGL simulations in Fig. 3i: error bars correspond to variance in domain size for an individual vortex.

NaTure PHysics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Nikta Fakhri, Joern Dunkel

Last updated by author(s): Jan 7, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Zeiss confocal LSM 700 used to collect data is operated using Zen software.

Data analysis Software for determining phase field and phase singularity, and for simulation of the point vortex model, is developed in the lab and are 
available upon request. Particle tracking is done using software developed by Jean-Yves Tinevez. The code is deposited on Matlab 
FileExchange https://www.mathworks.com/matlabcentral/fileexchange/34040-simple-tracker.  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The number of particle trajectories within each oocytes ranges from 50-200 and dynamics are observed for at least 750s.

Data exclusions Defects which do not form trajectories (i.e. only appear for 1 frame) are considered spurious detection and are omitted from data analysis.

Replication 11 replicates are shown in the paper.

Randomization Not relevant to study.

Blinding Not relevant to study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Patiria Miniata

Wild animals Wild starfish Patiria Miniata was procured from South Coast Bio-Marine LLC. The animals were kept in salt water fish tank 
maintained at 15 °C. Due to their wound healing capacity, multiple rounds of oocytes harvesting can be done without sacrificing 
the starfish.

Field-collected samples Not relevant for study.

Ethics oversight No ethical requirement since the animal is invertebrate.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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