MEMORANDUM

To: ALCON From: Peter Subject: Electromagnetic Shielding Date: November 18, 2020

1 Maxwell's Macroscopic Equations

$$\vec{\nabla} \cdot \vec{D} = \rho$$
$$\vec{\nabla} \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \vec{J}$$
$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$
$$\vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

The charge density ρ and current density \vec{J} refer to macroscopically free charges and currents.

2 Quantities and dimensions

Si base units

- 1. Second (s)
- 2. Meter (m)
- 3. Kilogram (kg)
- 4. Ampere (A)
- 5. Kelvin (K)
- 6. Mole (mol)
- 7. Candela (cd)

Electromagnetic quantities and units

- 1. $\vec{D} = \epsilon_{\circ}\vec{E} + \vec{P}$ A-s/m² electric displacement
- 2. V J/A-s=V potential

- 3. \vec{H} A/m magnetic field $\vec{H} = \vec{B}/\mu_{\circ} \vec{M}$
- 4. \vec{B} N/A-m-s=T magnetic induction
- 5. \vec{E} N/A-s=V/m electric field
- 6. $R \Omega = V/A = J/A^2 s$ resistance
- 7. $L V-s/A = \Omega s = H inductance$
- 8. $\mu_{\circ} = 4\pi \times 10^{-7}$ T-m/A, magnetic permeability
- 9. $\epsilon_{\circ} = 10^7/4\pi c^2 A^2 s^2/N m = (A s/V m)$, electric permittivity

1

- 10. $\vec{P} = \chi_e \vec{E}$ A-s/m² electric polarization
- 11. $\chi_e A^2 s^2 / N m = (A s / V m) electric susceptibility$
- 12. $\sigma = 1/\rho S/m = 1/\Omega m(N/A^2 s)$ conductivity
- 13. f_i m oscillator strength

3 Skin Depth

EM waves have solutions of the form

$$u\left(\vec{x},t\right) \propto \exp\left(i\vec{k}\cdot\vec{x}-i\omega t\right)$$

where *u* may be the electric or magnetic field.

$$k = \frac{\omega}{v} = \omega \sqrt{\mu\epsilon} = \frac{\omega}{c} \sqrt{1 + \frac{\chi_e}{\epsilon_\circ}} = \beta + i\frac{\alpha}{2}.$$

where $\mu = \mu_{\circ}$, Then,

$$u \propto \exp\left(\hat{kx}\left(i\beta - \frac{lpha}{2} - i\omega t\right)
ight).$$

Take $z = \hat{k} \hat{x}$. The fields attenuate along z as $\exp(-z\alpha/2)$ and the power flux goes as $\exp(-\alpha z)$.

The lowest order model of the electric susceptibility takes each electron in the atoms comprising bulk material as an independent, driven, damped harmonic oscillator with strength f_i ,

$$\chi_e = \frac{Ne^2}{m} \left[\frac{f_{\circ}}{w_{\circ}^2 - \omega^2 + i\omega\gamma_{\circ}} + \sum_{i=0}^{Z} \frac{f_i}{w_i^2 - \omega^2 + i\omega\gamma_i} \right]$$

where f_i is the oscillator strength. The lowest oscillator level determines whether the material is a conductor ($\omega_\circ = 0$) or an insulator ($\omega_\circ \neq 0$). For $\omega_\circ = 0$, the spring constant in the simple harmonic oscillator equation must be zero, implying the electron is unbound. For $\omega = 0$, the case of a constant electric field, the electron reaches an terminal velocity of eE/γ_\circ and for an electron number density of N, the current density is $J = (Ne^2/m\gamma_\circ) E$, implying the conductivity for a constant field is σ ($\omega = 0$) = $Ne^2/m\gamma_\circ$. The general expression is,

$$\sigma\left(\omega\right) = \frac{Ne^2}{m} \frac{f_{\circ}}{\omega - i\gamma_{\circ}}$$

Then,

$$\epsilon_{\circ} + \chi_{\circ} = \epsilon_{\circ} + i\frac{\sigma}{\omega} + \frac{Ne^2}{m} \left[\sum_{i=0}^{Z} \frac{f_i}{w_i^2 - \omega^2 + i\omega\gamma_i} \right] = \epsilon\left(\omega\right) + i\frac{\sigma}{\omega}.$$

The electric permittivity is predominantly real except when $|\omega - \omega_i| \sim \gamma_i$, area of strong scattering by atomic (or molecular) transitions. In the following, $\epsilon(\omega)$ is taken to be always real. Then, if $\beta \gg \alpha$,

The,

$$k = \omega \sqrt{\mu_{\circ}} \sqrt{\epsilon + i\frac{\sigma}{\omega}} = \omega \sqrt{\mu_{\circ}\epsilon} \sqrt{1 + i\frac{\sigma}{\omega\epsilon}}$$

 $\sigma/\omega\epsilon \gg 1$ for a good conductor and

$$k = (1+i)\sqrt{\frac{\omega\mu_{\circ}\sigma}{2}}$$

and the skin depth $\delta = 2/\alpha = \sqrt{2/\omega\mu_o\sigma}$ gives both the attenuation length and the wavelength through $\lambda = 2\pi/\text{Re}\,k = \sqrt{8\pi^2/\omega\mu_o\sigma}$. For poor conductors, $\sigma/\mu_o\epsilon \ll 1$, $k = \omega/v + i\sigma/2\sqrt{\mu_o/\epsilon}$, making the attenuation frequency independent.

4 Parallel conductor model

The outer surface of each plate lies at $\pm X/2$. The magnetic field outside the plates $H_{\circ} \exp -i\omega t\hat{z}$ and inside the plates $(H + iH_q) \exp i\omega t\hat{z}$. To first order, the time varying magnetic field induces an electric field between the plates $(E + iE_q) \exp i\omega t\hat{y}$ that drives a current density $(J + iJ_q) \exp i\omega t\hat{y}$ on the plate at

Taking a loop 1 in the x-z plane, Fig. 1 gives

$$H - iH_q - H_o = -\left(J + iJ_q\right)l = \left(\mathcal{J} + i\mathcal{J}_{\mathrm{II}}\right) \tag{1}$$

where l is the thickness of each plate.

Place the origin midway between the plates. Take a loop 2 in the y-z plane with one leg along the y-axis in the y direction and the other a distance x from the z-axis in the -y direction. Then,

$$-\left(E\left(x\right)+iE_{q}\left(x\right)\right)-\mu_{\circ}\omega\left(H+iH_{q}\right)x=0$$
(2)

From Ohm's law, on the plate at -X/2,

$$E\left(-X/2\right) + i\left(E(-X/2) = \frac{J + iJ_q}{\sigma} = \frac{\mathcal{J} + i\mathcal{J}_{\mathrm{II}}}{l\sigma}.$$
(3)

The real and imaginary parts of Eq.1-3 give six equations and solving for the magnetic field between the plates gives with $m = X l/\delta^2$

$$\frac{H}{H_{\circ}} = \frac{1}{1+m^2}$$
 (4)

$$\frac{H_q}{H_o} = \frac{m}{1+m^2}.$$
 (5)

For a good conductor with $m \gg 1$, $H_q \sim H_o/m$ and $H \sim H_o/m^2$.

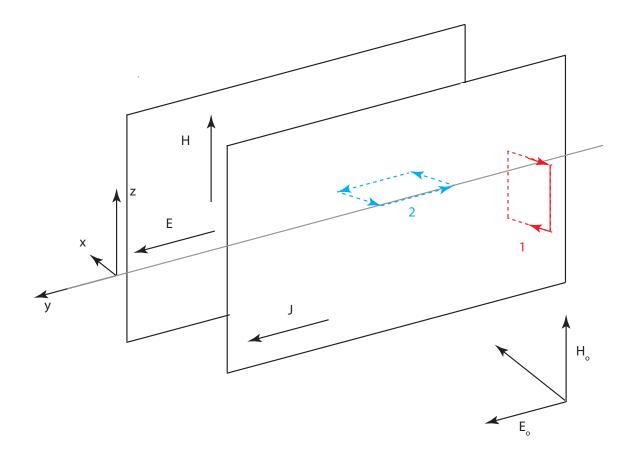


Figure 1: Parallel conducting plates with the loops used in the following calculation.

5 Case of box in a time varying magnetic field

Ref. [1, p. 13] considers the case of a 15 cm copper box in a time varying magnetic field between two Helmholtz coils. The box was made from PC board with 36 mu copper, $\sigma = 6 \times 10^7$ S/m. For these values, $\delta = l$ when $\nu = 3.3 \times 10^6$ MHz. The uniform magnetic field setup by the Helmholtz coils ensures there is no displacement field since $\vec{\nabla} \times \vec{H} = 0$, so $E_{\circ} = 0$ and

$$\frac{H}{H_o} = \frac{1}{1 + \mu_o \omega \sigma X l/2} = \frac{1}{1 + X l/\delta^2}.$$

The attenuation from the skin depth is $\exp -l/\delta \sim 1 - l/\delta \sim 1/1 + l/\delta$. Comparing with the expression above, an effective skin depth can be defined as

$$\delta_{\text{eff}} = \frac{\delta^2}{X}.$$

Figure 2 does the attenuation from surface currents and skin depth compared with measurements from [1].

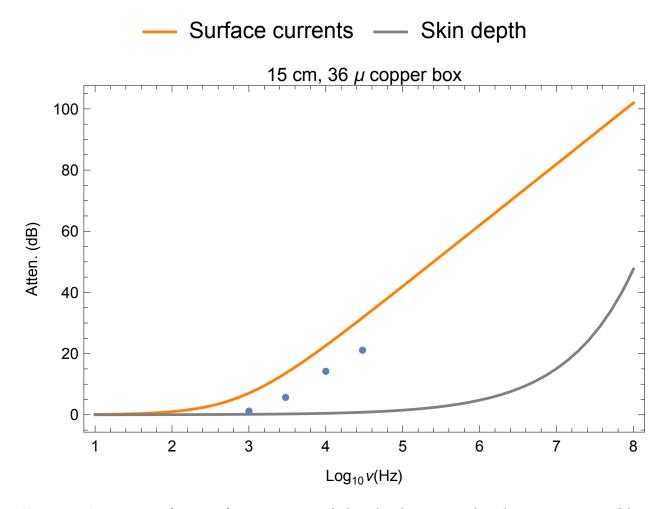


Figure 2: Attenuation from surface currents and skin depth compared with measurements (blue points) from [1].

References

[1] P. Horowitz and W. Hill. *The Art of Electronics: The X Chapters*. Cambridge University Press, 2020.