## The First Three Minutes Meeting 4

Peter Fisher February 3, 2021

## Meeting 4 – The Cosmic Microwave Background

- Announcements
- Discussion of III The CMB
  - Measurement of the CMB and what is means
- Break
- Black body radiation
  - Temperature and thermal motion
  - Photons and states
  - Thermal equilibrium
  - CMB sky surveys
  - Lumpiness

Announcements

- Notes, slides, etc. on website, tinyurl.com/firstthreeminutes
- Please read Chapter IV for next week
- Questions
  - Future of the universe does expansion stop?
  - Temperature and radiation emission
  - Transparency of the universe

## From last time - Expansion

| z   | а     | v/c  | Time<br>Since start<br>of Universe | Main result: Hubble law relates time, distance, and |
|-----|-------|------|------------------------------------|-----------------------------------------------------|
| 0.  | 1.    | 0.   | 13.8Gyr                            | velocity, so we can use <i>a, z,</i>                |
| 1.  | 0.5   | 0.6  | 4.89 Gyr                           | v/c, and time                                       |
| 2.8 | 0.26  | 0.87 | 1.87 Gyr                           | interchangably.                                     |
| 4.4 | 0.19  | 0.93 | 1.1Gyr                             |                                                     |
| 6.3 | 0.14  | 0.96 | 0.701 Gyr                          | Pros use z, observable.                             |
| 10. | 0.091 | 0.98 | 0.379 Gyr                          |                                                     |

Chapter III – Cosmic Microwave Background Radiation

"Light from the Big Bang", released at 377,000 y when hydrogen formed

Detected in 1963, major source of information ever since.

Second major piece of evidence for Big Bang

Interaction of light and matter

Two rules:

 Accelerating charged particles create light (radiation)



2. Light bounces offor "scatters" fromcharged particles



Energy unit – the electron volt

- Energy of photons: Red: 1.65-2.01 eV Green: 2.21-2.49 eV Blue: 2.57-2.76 eV
- Masses

proton: 938 MeV/c<sup>2</sup> electron: 0.511 MeV/c<sup>2</sup>



After nuclei form:

At t=5 min, the universe is composed of p, He, (Li),  $e^{+/-}$ ,  $\gamma$ ,  $\nu$ 

T=6 MK, average thermal energy of 54 keV

At this temperature, the electrons cannot bind to the protons to make hydrogen.

The resulting state of matter is called a plasma

## CMBR (cont.)

# At t=5 min, unbound electrons, positrons, and protons scattered the photons, effectively trapping them.





When confined in the plasma, the particles and photons are in thermal equilibrium (same temperature).

The photons have a characteristic spectrum called the black body spectrum.

More on this later...

## CMBR (cont.)

The universe expanded and cooled. The expansion stretched the photons, lowering their energy.

At 47,000 y, the temperature is 7,400 K and the energy density of the particles (p, He, e) equals the energy density of the photons.

At 377,000 y, the temperature is 2,610 K and the electrons are mostly bound to the protons and He. The universe has become electrically neutral.



## CMBR (cont.)

When neutral hydrogen formed, the photons no longer had charged particles to scatter from – they were no longer in equilibrium – they had decoupled.

The photons had a black-body spectrum with T=2,600 K.

They travelled 13.6 Gy, during which time the waves stretched by a factor of 1,100 from the expansion of the universe. The CMB now has a temperature of 2.7 K.

### Observation

![](_page_13_Picture_1.jpeg)

#### Penzias and Wilson, 1963 at the Holmdale antenna

![](_page_14_Picture_0.jpeg)

Fig. I The 20 foot horn-reflector which was used to discover the Cosmic Microwave Back-ground Radiation.

![](_page_15_Figure_0.jpeg)

#### 1 W=1,000,000,000,000,000,000 WZ

Princeton 3.2 cm

![](_page_16_Picture_1.jpeg)

## 5 m Break

Black body spectrum

- Independent of material
- Total power output proportional to T<sup>4</sup>

![](_page_18_Figure_3.jpeg)

### Interaction of Light with Matter

![](_page_19_Figure_1.jpeg)

Radiation

![](_page_19_Picture_3.jpeg)

acceleration

Lattice of atoms form a solid material – the interactions between the atoms hold them in place as if by springs

![](_page_20_Picture_1.jpeg)

If displaced slightly and released, the atoms will oscillate back and forth and radiate.

In a room, T=300 K, light of many different frequencies impinging on the lattice

![](_page_21_Picture_1.jpeg)

Some of the atoms get hit by light, which bounces off (Thompson scattering). The atom gets pushed a little and vibrates.

![](_page_22_Picture_1.jpeg)

More atomics get hit and begin to vibrate. Atoms next to vibrating atoms begin to vibrate.

![](_page_23_Figure_1.jpeg)

The vibrations spread throughout the material.

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

Eventually, all the atoms are vibrating the same amount and radiating energy.

![](_page_25_Figure_1.jpeg)

The radiated light energy equals the light energy coming in.

## Spectrum

The radiation spectrum from a material of vibrating atoms is

- Independent of the material
- Characterized by a single during the temperature T 10<sup>-5</sup>
- Inherently quantum mechanical

![](_page_26_Figure_5.jpeg)

Max Planck, 1894, black body problem

Postulate: light quantized into packets, energy is *hf*, f is frequency, *h* is a constant

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

Einstein (1905) – Photo-electric effect, energy depends on frequency, not intensity

![](_page_27_Figure_5.jpeg)

![](_page_28_Figure_0.jpeg)

Wilkinson Microwave Anisotropy Probe (WMAP)

- Differential measurement
- Operated 2001-10

![](_page_28_Figure_4.jpeg)

![](_page_29_Figure_0.jpeg)

## Back on Earth

Gravitational waves in the inflaton field can cause very small (!) changes to the CMB called "B modes". This is the next big thing in CMB experiments.

![](_page_30_Picture_2.jpeg)

Abigail Vierregg -Chicago

#### Keck Array at the South Pole

![](_page_30_Picture_5.jpeg)

#### Next week – Recipe for a Hot Universe How annihilation happens