## MEMORANDUM

## To: ALCON

From: Peter Fisher
Subject: A simple derivation of Unruh Radiation
Date: October 11, 2023

Fig. 1 shows a PARTICLE frame containing electromagnetic radiation of frequency $\omega^{\prime}$ and wave number $\vec{k}= \pm \omega^{\prime} \hat{x}$. There is a set of PARTICLE frames, each corresponding to a different time. In each PARTICLE frame, the particle is at rest, $u^{\prime}=0$, and accelerating with $d \beta_{u^{\prime}} / d t^{\prime}=a$. The time dependent velocity $v$ for the Lorentz transformation between the two frames is chosen so that the particle remains at rest and accelerates with $a$.

Our first task is to find $\beta_{v}(t)$. Next, we will find $\omega$ and $\vec{E}$ in the LAB frame. Finally, we Fourier transform $\vec{E}$ and find that the power spectrum follows a black body spectrum and compute the temperature $T$.

1. The velocity of the particle in the LAB frame is

$$
u=\frac{v+u^{\prime}}{1+v u^{\prime} / c^{2}}
$$

or

$$
\beta_{u}=\frac{\beta_{v}+\beta_{u^{\prime}}}{1+\beta_{v} \beta_{u^{\prime}}} .
$$

We need to find how $\beta_{u}$ evolves with time as a function of acceleration and time only, which means finding $d \beta_{u} / d t^{\prime}$ and setting it equal to $d \beta_{v} / d t^{\prime}$ to ensure the particle remains at rest in all PARTICLE frames.

$$
\begin{align*}
\frac{d \beta_{u}}{d t^{\prime}}= & \frac{\left(d \beta_{v} / d t^{\prime}+d \beta_{u^{\prime}} / d t^{\prime}\right)\left(1+\beta_{v} \beta_{u^{\prime}}\right)}{\left(1+\beta_{v} \beta_{u^{\prime}}\right)^{2}}  \tag{1}\\
& -\frac{\left(\beta_{v}+\beta_{u^{\prime}}\right)\left(\beta_{u^{\prime}} d \beta_{v} / d t^{\prime}+\beta_{v} d \beta_{u^{\prime}} / d t^{\prime}\right)}{\left(1+\beta_{v} \beta_{u^{\prime}}\right)^{2}}  \tag{2}\\
= & \frac{a}{\gamma_{v}^{2}} \tag{3}
\end{align*}
$$

In any PARTICLE frame, $\beta_{u^{\prime}}=0$ and $d \beta_{u^{\prime}} / d t^{\prime}=a$. The last step comes from applying these conditions on the particle in the PARTICLE frame. $t^{\prime}$ is the proper time of the PARTICLE frame.
2. The requirement that the particle remain at rest and accelerate at $a$ in all PARTICLE frames gives $\beta_{u}=\beta_{v}$

$$
\frac{d \beta_{v}}{d t^{\prime}}=\frac{d \beta_{u}}{d t^{\prime}}=\frac{a}{\gamma_{v}^{2}}
$$



Figure 1: PARTICLE and LAB frames.
and

$$
\begin{align*}
\int \frac{d \beta_{v}}{1-\beta_{v}^{2}} & =\int a d t^{\prime}  \tag{4}\\
-\frac{1}{2} \ln \left(1-\beta_{v}\right)+\frac{1}{2} \ln \left(1+\beta_{v}\right) & =a t^{\prime}+C  \tag{5}\\
\ln \frac{1+\beta_{v}}{1-\beta_{v}} & =2 a t^{\prime}+C  \tag{6}\\
\frac{1+\beta_{v}}{1-\beta_{v}} & =C \exp \left(2 a t^{\prime}\right) . \tag{7}
\end{align*}
$$

We fix $C$ by saying that the particle "turns around", $\beta_{v}=0$, at $t^{\prime}=0$, so $C=1$. Solving Eq. 7 gives $\beta_{v}=\tanh a t^{\prime}$. Also, $\gamma_{v}=\cosh a t^{\prime}$ and $\beta_{v} \gamma_{v}=\sinh a t^{\prime}$.
3. Next, we transform the electromagnetic wave from the PARTICLE frame to the LAB frame,

$$
\begin{align*}
\omega & =\gamma_{v} \omega^{\prime} \pm \beta_{v} \gamma_{v} k_{x}  \tag{8}\\
& =\omega^{\prime}\left(\cosh a t^{\prime} \pm \sinh a t^{\prime}\right)  \tag{9}\\
& =\omega^{\prime} e^{ \pm t^{\prime}} \tag{10}
\end{align*}
$$

The positive solutions correspond to photons moving in the $\hat{x^{\prime}}$ direction and the negative solutions correspond to photons moving in the $-\hat{x^{\prime}}$ direction. At each time $t$, the PARTICLE and LAB frames are connected by a Lorentz transformation with $\beta_{v}(t)$, a photon in the PARTICLE frame moving in the $x^{\prime}$ also moves in the $\hat{x}$ direction in the LAB frame, and so on.
4. The electric field is $\vec{E} \propto e^{i \phi\left(t^{\prime}\right)}$ and the phase is

$$
\begin{align*}
\phi\left(t^{\prime}\right) & =\int_{-\infty}^{t^{\prime}} d t^{\prime \prime} \omega^{\prime} e^{a t^{\prime \prime}}  \tag{11}\\
& = \pm\left.\frac{\omega}{a} e^{ \pm a t^{\prime}}\right|_{-\infty} ^{t^{\prime}} \tag{12}
\end{align*}
$$

The positive solution converges, the negative does not. For the positive solution, we have

$$
\phi\left(t^{\prime}\right)=\frac{\omega^{\prime}}{a} e^{a t^{\prime}}
$$

5. The power density is proportional to the norm of the Fourier transform of the electric field

$$
\begin{equation*}
P(\Omega)=\left|\int_{-\infty}^{\infty} d t^{\prime} e^{i \Omega t^{\prime}} e^{i\left(\omega^{\prime} / a\right) e^{a t^{\prime}}}\right|^{2} . \tag{13}
\end{equation*}
$$

Carrying out the integral is straight-forward, but tedious: substitute $y=\exp a t^{\prime}$ then use

$$
\begin{align*}
\int_{0}^{\infty} x^{\mu-1} \sin a x d x & =\frac{\Gamma(\mu)}{a^{\mu}} \sin \frac{\mu \pi}{2}  \tag{14}\\
\int_{0}^{\infty} x^{\mu-1} \cos a x d x & =\frac{\Gamma(\mu)}{a^{\mu}} \cos \frac{\mu \pi}{2} \tag{15}
\end{align*}
$$

Then

$$
\begin{equation*}
\int_{-\infty}^{\infty} d t^{\prime} e^{i \Omega t^{\prime}} e^{\omega^{\prime} / a e^{a t^{\prime}}}=\frac{1}{a} \Gamma\left(\frac{i \Omega}{a}\right)\left(\frac{\omega^{\prime}}{a}\right)^{i \Omega / a} e^{-\pi \Omega a} \tag{16}
\end{equation*}
$$

Squaring and using

$$
\begin{equation*}
\left|\Gamma\left(\frac{i \Omega}{a}\right)\right|^{2}=\frac{\pi a}{\Omega} \sinh \frac{\pi \Omega}{a} \tag{17}
\end{equation*}
$$

gives

$$
\left|\int_{-\infty}^{\infty} d t^{\prime} e^{i \Omega t^{\prime}} e^{\omega^{\prime} / a e^{a t^{\prime}}}\right|^{2}=\frac{2 \pi}{\Omega a} \frac{1}{e^{2 \pi \Omega a-1}} .
$$

Comparing with the black body spectrum gives $T=\hbar a / 2 \pi k_{B}$.

## 1 Some observations and questions

This derivation of the black body spectrum resulting from a single, arbitrary frequency in an accelerating frame seems miraculous: how can just special relativity and electricity develop the black body spectrum? In fact, using $E=\hbar \omega$ brings in quantum mechanics as this resulted from study of the black body spectrum to begin with.

The dependence on $\omega^{\prime}$ disappears in Eq. 17. The resulting spectrum should be independent of frequency since we could start from a third frame moving at constant velocity with respect to the PARTICLE frame. The net effect of doing this is changing the turn-around time, which in turn changes the value of the integration constant $C$ and $\beta_{v}=\tanh a\left(t^{\prime}-t_{\text {turn }}^{\prime}\right)$, ultimately given a black body spectrum in the LAB frame.

What we have shown is that any radiation in an accelerating from appears as a black body spectrum in the LAB frame, a different statement than saying an accelerating object radiates a black body spectrum. The "object" that appears in Fig. 1 serves no purpose, the EM radiation gives us the black body spectrum.

