
MEMORANDUM
To: Kris

From: Peter

Subject: Memo #90a: The Intercept Problem (revised)

Date: August 18, 2024

This note considers the intercept problem - how to change the velocity of an intercept vehicle
to collide with a target vehicle1 based on the maneuvers of the target. Bounding the needed
acceleration of the target vehicle based on the target’s acceleration capability serves as this memo’s
only goal - the method probably does not provide an optimal solution, does not take into account
prior knowledge of the target, and does not advance beyond two dimensions. Obtaining the result
proved difficult, and the Appendix provides the algebraic manipulations for checking.

Figure 1 frames the problem: a target located at r⃗′1 moves with velocity u⃗1 at time t1 while an
interceptor starts at r⃗1 with velocity v⃗1 on an intercept course such that,

R⃗1 = r⃗′1 − r⃗ = v⃗c,1tgo (1)

where tgo = tintercept− t1 gives the time to intercept. Note the minus sign in Eq. 1 arises from ˙⃗
R3 =

˙⃗r′1 − ˙⃗r1 - the vector connecting the two vehicles must decrease with time. The vector connecting
the two vehicles R⃗1 must lie parallel to their relative velocity v⃗c,1 with R⃗1 · v⃗c,1 > 0 and

tgo =
|R⃗|
|v⃗c|

for the intercept to take place. Restated, R⃗ × v⃗c = 0 serves as the intercept condition used to
determine the interceptor’s response to a maneuver by the target.

At t1, the target maneuvers by applying an acceleration a⃗′τ = ∆u⃗, where τ gives the character-
istic response time of the interceptor: at between t1 and t2 = t1 + τ , the interceptor measures the
change in velocity of the target, computes a response, and, at t2, initiates an acceleration a⃗1.

The maneuver of the target breaks the intercept condition R⃗2 × v⃗c,2 = 0 and the target seeks
to restore this condition by the time t3 = t1 + 2τ by matching the target’s velocity change ∆u⃗1
and making up the distance ∆u⃗1τ/2 it lost during the interval t1 − t2. The following outlines
the calculation of a⃗1 = ∆v⃗1/τ needed to restore the intercept condition. The Appendix gives the
line-by-line calculation, and Figure 1 illustrates the problem and solution graphically.

1This note will refer to the target vehicle as the target and the interceptor vehicle as the interceptor.
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Figure 1: Framing diagram for the intercept problem. The red arrows on the left show the target’s
trajectory, and the blue on the right shows the trajectory of the interceptor.
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Eq. 5-10 shows the positions, velocities, and times at t1. tgo gives the time until the intercept
occurs and decreases at t increases. Eq. 11-18 gives the positions and velocities at t2 = t1 + τ after
the target stops accelerating - at this point, the intercept condition no longer holds, and the target
must accelerate to restore it. Note that tgo decreases with time.

Eq. 19-31 gives the positions and velocities at t3 and Eq. 24-25 show the decomposition of the
response velocity ∆v⃗1 into a piece that matches the interceptor’s change in velocity and a piece
that makes up for the distance lost in the interval t1 − t2. This section results in expressions for R⃗3

(Eq. 32) and v⃗c,3(Eq. 31). Evaluating in Eq. 32-41R⃗3 × v⃗c,3 = 0 in terms of the unknown v⃗B - the
additional target velocity needed to make up distance lost, giving a general intercept expression.

∆v⃗B ×
(
R⃗1 +∆u⃗1τ − 3

2
v⃗c,1τ

)
−∆u⃗1 × v⃗c,1τ − R⃗1 × v⃗c,1 = 0 . (2)

Evaluating Eq. 2 in terms of components gives an affine equation for the components of ∆v⃗1 of
the form,

α∆v⃗1,x + β∆v⃗1,z + γ = 0

Eq. 43, 44, and 45 give expressions for α, β, and γ. Eq. implies an infinite number of solutions.
Practicalities will determine the values of the components of ∆v⃗1, such as,

• Upper and lower limits on the vehicle’s velocity

• The acceleration that the propulsion system can provide

• The acceleration time

• The desired intercept time.

If R⃗1 × v⃗c,1 = 0, R⃗1 = v⃗c,1tgo and Eq. 2 becomes the restricted guidance law,

R⃗1 ×∆u⃗1
τ

tgo
−∆v⃗B ×

(
R⃗1

(
1− 3τ

2tgo

)
−∆u⃗1τ

)
= 0 (3)

We now use Eq. 3 to analyze four example engagements. A head-on engagement starts with
the target 2 km from the interceptor with a closing velocity of 2 km/s, giving tgo = 1 s and τ = 0.1
s. The target accelerates laterally at 50 g, and the interceptor must respond. Fig. 2 shows the
relationship between the components of v⃗1 and the intercept condition R⃗1 × v⃗c,1 as a function
of ∆v⃗1,x. Fig. 3 shows the relationship between the ratio of the interceptor and target. For this
example, the minimum ratio ∥a1/a′1∥ = 1.0002 gives tgo = 0.82 s. The graph also shows that
longer tgo requires the interceptor to decelerate along its direction of travel.

The second example shows a tail-case with the target and interceptor 2 km apart. The vehicles
move in the same direction with the target and interceptor moving at 1 km/s. Here, tgo becomes
infinite. The target accelerates laterally, and the interceptor must respond. The upper left graph of
Fig. 3 shows that at the minimum calculated interceptor acceleration ratio of 1.4, tgo = 2004 s and
tgo = 1s requires an acceleration ratio of 39.

In the next two examples, the interception occurs along perpendicular trajectories with the
target traveling along the ẑ axis at 1 km/s and starting at z = −1km. The interceptor starts at
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Figure 2: Left: Relationship between components of v⃗1. Right: intercept condition R⃗1 × v⃗c,1 as a
function of ∆v⃗1,x.
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Ex. 1 - Head-on with 50 g turn
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Ex. 2 - Tail chase with 50 g turn
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Ex. 3 - Perpendicular with 50 g turn in attack
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Ex. 4 - Perpendicular with 50 g turn in retreat

Figure 3: Example engages showing tgo as a function of the ratio of the interceptor to target ac-
celeration ratio. The orange portion of the curve indicates the target decelerates along the pri-
mary direction of motion, and blue indicates an acceleration along the primary direction of travel.
The upper left shows the head-on engagement, the upper right shows a tail chase, the lower left
shows the curve for a perpendicular intercept where the target turns toward the interceptor, and
the lower right shows the curve for a perpendicular interception where the target turns away from
the interceptor.
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Figure 4: The examples of a perpendicular intercept. The left panel shows the target accelerating
toward the interceptor at 50 g, and in the second example, the target turns away from the inter-
ceptor at 50 g. The orange portion of the curve indicates cases in which the interceptor decelerated
along its primary direction of travel.

x = −1 km and travels along the x̂ axis at 1 km/s, Fig. 4. tgo,1 = 1s. In the first example, the target
turns toward the interceptor with an acceleration of 50 g, and Fig. 3 shows the acceleration ratio
versus tgo,3. The acceleration ratio of 1.5, the minimum, gives tgo,3 = 0.78 s, a shorter time than
the 0.8 s had the target not maneuvered.

In the final example, Fig. 4, the target turns away from the interceptor at 50 g, resulting in
tgo,3 = 0.80 s for the minimum acceleration ratio of 1.5, Fig 3. The time to intercept turns out
slightly longer as the interceptor has to travel slightly further. In both examples, the interceptor
decelerates a small amount in its direction of travel for the minimum time to intercept.

In the interval τ before the intercept, the target may make one last maneuver and accrue a
displacement a⃗′finalτ

2/2 to which the interceptor cannot respond. Success will depend on the
Goodman number,

G =
a⃗′finalτ

2/2

bi + bt
,

where bt represents the target’s projected linear dimension and bt gives the interceptor’s kill ra-
dius—either the vehicle’s projected linear dimension or the dispersal radius of shrapnel explo-
sively deployed.

As a final example, we consider the case in which the target can respond more quickly than
the interceptor. Based on Example 1, the vehicles lie on a collision course tgo before the intercept.
For interceptor response time τ and target response time τ ′, τ < τ ′. For the final maneuver of the
engagement, the target maneuvers at the last possible instant, so τ ′ = tgo, so if the target begins
accelerating with a′1x̂ at t = 0, the interceptor can respond at t = τ and accelerate with a1x̂ and the
intercept happens at t = tgo, Fig. 5. Then,
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x′ (t) = 1
2a

′
1t

2

x (t) = 1
2a1 (t− τ)2

}
→ x (tgo) = x′ (tgo) →

a1
a′1

=

(
tgo/τ

tgo/τ − 1

)2

(4)

gives the ratio of the accelerations needed. For the nominal case of τ ′ = 5τ , a1/a′1 = 1.6. If we
take the rule-of-thumb case of a1/a′1 = 3, then τ ′/τ = tgo/τ = 2.6.

The final example shows how Eq. 5 works and also shows the likely futility of the end-game
maneuver: even if the interceptor fails to destroy the target, the target has maneuvered over 60 m
off its intended course, possibly missing its target.

These examples lead to some observations:

• For engagements at hypersonic speeds, 50 g accelerations do little to change the situation
even in the end-game of tgo,3 = 1s. For all but the second example, the time to intercept
changed little.

• In the second example, a tail-chase at identical speeds, the intercept would not have hap-
pened even without the maneuver and, owing to the hypersonic speeds compared with the
available acceleration.

• Inspection of the Eqs. 2 and 3 does not reveal a clear rule-of-thumb for the velocity ratio. In
the cases offered here, a ratio of 1.5 seems to do the job in all cases except a tail chase.

• A ”velocity matching time” can characterize the interception regime. Defining tmatch =
vc,1/a

′
1 gives the time in which the target can deviate at a velocity comparable to the closing

velocity. If tmatch...

The generalized guidance equation does not provide a control law – it gives the tgo for an input
∆v⃗1. Allowing different response times for the target and interceptor2 would provide a valuable
extension to the generalized guidance equation. Also, the guidance law provides the basis for
predictive guidance by setting the response time for the interceptor longer than that of the target.
Finally, applying the guidance law iteratively with the target following an acceleration algorithm
would provide a complete simulation of an engagement.

1 Appendix

Initial state at t1 - on an intercept course. tgo is the time until intercept. Target begins a maneuver,
accelerating at constant a⃗′1. If no changes occur, the intercept will happen at tintercept.

R⃗1 = r⃗′1 − r⃗1 (5)
˙⃗
R1 = ˙⃗′r1 − ˙⃗r1 = u⃗1 − v⃗1 = v⃗c,1 (6)
v⃗c,1 = v⃗1 − u⃗1 (7)

R⃗1 = v⃗c,1tgo (8)

R⃗1 · v⃗c,1 > 0 (9)
tintercept = t1 + tgo (10)

2This change amounts to changing τ to τ ′ in the equations relating to the target and rederiving the guidance law.
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At t2 = t1+ τ , the target stops accelerating. The interceptor has measured the target’s accelera-
tion, computed the needed acceleration to restore intercept condition by t3, and begun accelerating
with a⃗1.

∆u⃗1 = a⃗′1τ (11)
r⃗′2 = r⃗1 + u⃗1τ +∆u⃗1τ/2 (12)
r⃗2 = r⃗1 + v⃗τ (13)
u⃗2 = u⃗1 +∆u⃗1 (14)
v⃗2 = v⃗1 (15)
R⃗2 = R⃗1 + u⃗1τ +∆u⃗1τ/2− v⃗1τ (16)

= R⃗1 + v⃗c,1τ +∆u⃗1τ/2 (17)
v⃗c,2 = v⃗c,1 +∆u⃗ (18)

At t3 = t1 + 2τ a⃗1 stops. ∆v⃗1 = a⃗1τ .

r⃗′3 = r⃗′2 + u⃗2τ = r⃗′1 +
3

2
u⃗1τ + 2∆u⃗1τ (19)

r⃗3 = r⃗2 + v⃗1τ +
∆v⃗1τ

2
(20)

= r⃗1 +
1

2
∆v⃗B +

1

2
∆u⃗1τ + 2v⃗1τ (21)

R⃗3 = r⃗′3 − r⃗3 (22)

= R⃗2 + (u⃗1 − v⃗1)τ + (∆u⃗1 −
∆v⃗1
2

)τ (23)

∆v⃗1 = ∆v⃗A +∆v⃗B = ∆u⃗1 +∆v⃗B (24)

∆u⃗1 −
∆v⃗A +∆v⃗B

2
= ∆u⃗1 −

∆u⃗1 +∆v⃗B
2

=
∆u⃗1 −∆v⃗B

2
(25)

R⃗3 = R⃗2 + v⃗c,1τ +
∆u⃗1 −∆v⃗B

2
τ (26)

= R⃗1 + v⃗c,1τ +
∆u⃗1
2

+ v⃗c,1τ +
∆u⃗1 −∆v⃗B

2
τ (27)

= R⃗1 + 2v⃗c,1τ +∆u⃗1τ − ∆v⃗Bτ

2
(28)

u⃗3 = u⃗′2 = u⃗1 +∆u⃗1 (29)
v⃗3 = v⃗1 +∆v⃗1 = v⃗1 +∆u⃗1 +∆v⃗B (30)

v⃗c,3 = v⃗1 −∆u⃗1 + v⃗1 −∆v⃗1 = v⃗c,1 +∆v⃗B (31)
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R⃗3 × v⃗c,3 = −R⃗1 × v⃗c,1 (32)

−R⃗1 ×∆v⃗B (33)
+2v⃗c,1τ × v⃗c,1(= 0) (34)
+v⃗c,1τ ×∆v⃗B (35)
+∆u⃗τ × v⃗c,1 (36)
−∆u⃗1τ ×∆v⃗B (37)

−3

2
∆v⃗Bτ × v⃗c,1 (38)

+
1

2
∆v⃗Bτ ×∆v⃗B(= 0) (39)

(40)

Collecting terms gives the general guidance law:

∆v⃗B ×
(
R⃗1 +∆u⃗1τ − 3

2
v⃗c,1τ

)
−∆u⃗1 × v⃗c,1τ − R⃗1 × v⃗c,1 = 0 (41)

Next, insert v⃗c,1 = −R⃗1/tgo to obtain the restricted guidance law,

R⃗1 ×∆u⃗1
τ

tgo
−∆v⃗B ×

(
R⃗1

(
1− 3τ

2tgo

)
−∆u⃗1τ

)
= 0 (42)

α =

(
R⃗1 +∆u⃗1 −

3

2
v⃗c,1τ

)
x

(43)

β = −
(
R⃗1 +∆u⃗1 −

3

2
v⃗c,1τ

)
z

(44)

γ = v⃗c,1 ×
(
∆u1τ + R⃗1

)
y

(45)
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Figure 5: Final: τ = 0.1s, τ ′ = 0.5s, and tgo = 0.5s end-game intercept. End-game means the
target has time for one last maneuver, τ ′ = tgo. Vehicles are shown at 0.1 s intervals. At t = 0, the
target accelerates along the x-axis with 50 g, and, 0.1s, the interceptor begins accelerating at 80g,
as dictated by Eq. 4.
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