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Emergence of collective oscillations in 
massive human crowds

François Gu1, Benjamin Guiselin1, Nicolas Bain2, Iker Zuriguel3 & Denis Bartolo1 ✉

Dense crowds form some of the most dangerous environments in modern society1. 
Dangers arise from uncontrolled collective motions, leading to compression against 
walls, suffocation and fatalities2–4. Our current understanding of crowd dynamics 
primarily relies on heuristic collision models, which effectively capture the behaviour 
observed in small groups of people5,6. However, the emergent dynamics of dense 
crowds, composed of thousands of individuals, remains a formidable many-body 
problem lacking quantitative experimental characterization and explanations rooted 
in first principles. Here we analyse the dynamics of thousands of densely packed 
individuals at the San Fermín festival (Spain) and infer a physical theory of dense 
crowds in confinement. Our measurements reveal that dense crowds can self-organize 
into macroscopic chiral oscillators, coordinating the orbital motion of hundreds of 
individuals without external guidance. Guided by these measurements and symmetry 
principles, we construct a mechanical model of dense-crowd motion. Our model 
demonstrates that emergent odd frictional forces drive a non-reciprocal phase 
transition7 towards collective chiral oscillations, capturing all our experimental 
observations. To test the robustness of our findings, we show that similar chiral 
dynamics emerged at the onset of the 2010 Love Parade disaster and propose a 
protocol that could help anticipate these previously unpredictable dynamics.

Stir your morning tea or coffee and watch. To explain the formation of 
a vortex in your hot beverage, physicists, engineers and mathemati-
cians treat fluids as continua and ignore the complex dynamics at the 
molecular scales: they use the basic laws of fluid mechanics. Beyond 
fluids, descriptions of living matter as continua have been instrumental 
in understanding the large-scale flows of the cytoskeleton, cell tissues 
and animal groups, where the interactions between the elementary 
units remain largely unknown8–11. In stark contrast, active-matter hydro-
dynamics has made limited strides in explaining crowd dynamics5,12.

Most reproducible experiments and observations of pedestrian 
dynamics are indeed based on small groups of individuals whose 
motion cannot be accurately captured by continuum descriptions5,6. 
Consequently, the dominant approach is based on heuristic models 
of two-body interactions5,6,13–16. Introduced nearly 30 years ago, these 
models accurately predict the trajectories of individuals within small 
groups of pedestrians5,17, and are used worldwide for safety evacuation 
models. However, determining which behavioural models are best 
suited to capture and explain the flows that emerge in massive crowds 
remains an open question3,5,12,18–20. The intrinsic unpredictability and 
hazards of mass gatherings have been major impediments to charac-
terizing the uncontrolled dynamics of dense crowds through safe and 
reproducible measurements. When confined, dense crowds create one 
of the most dangerous environments, where hundreds of individuals 
can move en masse over metres, press others against walls, and lead to 
suffocation and fatalities2. But, understanding how individuals interact 
with their neighbours in crowded environments is not a prerequisite to 

explain and predict the macroscopic dynamics of dense crowds—just 
as models of molecular interactions are not required to account for 
macroscopic fluid flows.

Here we study confined crowds composed of thousands of close- 
packed individuals whose dynamics can be analysed safely and repeat-
edly. We compare their motion with crowd quakes observed at the onset 
of the Love Parade disaster in 20104,21 and reveal that, past a critical 
density, confined crowds can undergo spontaneous oscillations that 
involve the synchronous orbital motion of hundreds of individuals 
in the absence of external cues or control mechanisms. Combining 
insights gained from our consistent measurements with symmetry 
principles, we construct a mechanical theory of dense crowds from first 
principles, without resorting to behavioural hypothesis. We show that 
dense crowds realize an unanticipated form of odd frictional matter, 
and explain how odd friction and confinement conspire to induce a 
transition towards collective chiral oscillations. To help prevent acci-
dents, we provide a strategy to monitor the motion of dense crowds 
in real time, and anticipate their uncontrolled collective dynamics.

Collective motion emerges in dense crowds
The opening ceremony of the San Fermín festival, the Chupinazo, allows 
us to perform repeated series of measurements on safe yet densely 
packed crowds. This event gathers more than 5,000 participants every 
year, on 6 July, at the exact same hour, on the Plaza Consistorial in the 
city of Pamplona, Spain (Fig. 1a). This plaza is about 50-m long and 20-m 
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wide, and the surrounding buildings offer clear observation spots to 
take hours of high-resolution footage (Fig. 1b). We have repeated our 
observations in four different years (2019, 2022, 2023 and 2024) before 
and after the 2020 COVID-19 pandemic, and under different weather 
conditions (Methods). Owing to sub-optimal imaging in 2019, some 
measurements are performed on only the 2022, 2023 and 2024 datasets.

To gain some intuition about the type of crowd we study, we invite 
the reader to watch Supplementary Videos 1–4 first. They summa-
rize the evolution of the crowd dynamics before the opening of the  
festival (we also show typical snapshots in Extended Data Fig. 1).  

From 10:00 to 12:00 (Fig. 1c), a joyful mass of people dressed in white 
clothes progressively gathers on the plaza, where they dance, sing, 
drink and celebrate, until the crowd becomes closely packed, thereby 
preventing the participants from moving freely (Fig. 1d). A few seconds 
before the opening of the festival, all participants concomitantly stop 
their motion and raise a red handkerchief. Orchestras then exit the city 
hall, perform and depart from the square leading to the dispersion 
of the massive crowd in the streets of Pamplona. In this article, if not 
specified otherwise, we focus on the time interval that precedes the 
opening of the festival, during which no external drive or signal dictates 
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Fig. 1 | Gathering of a massive crowd in Pamplona, Spain. a, Picture of the 
crowd at the opening ceremony of the San Fermín festival (2019). b, Aerial  
view of the Plaza Consistorial. We analyse the crowd dynamics in the region 
delimited by the dashed polygon. The orange dots are the observation spots. 
Scale bar, 10 m. c, Close-up view on the crowd 57 minutes and 15 seconds before 
the opening of the festival. The green dots show the position of the head of the 
festival attendees (Methods). d, Close-up view on the crowd 30 seconds before 
the opening of the festival. The crowd density has markedly increased. e, Plot of 
the mean number density of the crowd as a function of the time to the festival 

opening. Diamond, t = −57:15 (see c); star, t = −00:30 (see d). The crowd density 
increases slowly and monotonically. The dashed line indicates the value of ρ*. 
The measurement error is smaller than the statistical variations that define the 
width of the plots. Inset: radial distribution function g(r) computed from the 
position of individuals and averaged over about 7 minutes before the festival 
opening (see Methods for details). f, Snapshots of two local-density maps for 
t = −57 min 15 s (left) and t = −30 s (right). The white areas correspond to regions 
where the field of view is obstructed by buildings, flags and balloons (see a and 
Methods).
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the dynamics of the participants. We report measurements performed 
in the polygon shown in Fig. 1b.

We view the crowd as an active continuum and therefore quantify its 
dynamical states by measuring two fields: the number density ρ(r, t), 
and the local velocity v(r, t) where r and t are the position and time, 
respectively. We measure ρ owing to the automated detection of the 
head of each participant as detailed in Methods. In Fig. 1e, we show that 
the average density ρ(t) = ⟨ρ(r, t)⟩r increases linearly over time, reach-
ing a value close to six people per square metre when the festival starts 
(t = 00:00). However, this average value does not capture the density 
heterogeneities seen in Fig. 1f. Locally, ρ(r, t) can reach values as high as 
nine people per square metre (think of nine persons packed in a shower 
cabin). These heterogeneities are, however, poorly correlated in space, 
as seen in the pair correlation functions plotted in the inset of Fig. 1e.

Together with their extreme density, the large velocity fluctuations 
are the most striking visual features of the Chupinazo crowd. As seen 
in Supplementary Video 5, when ρ becomes large enough, groups of 
hundreds of individuals undergo uncontrolled correlated motion. 
Our central goal is to quantify, predict and elucidate this dynamics.

To measure the local flow field, we use conventional particle image 
velocimetry. In Methods, we detail how we compute v(r, t), in the 
regions of space where the flags and balloons visible in Fig. 1a do not 
obstruct our observations. Unlike the crowd density, the velocity fluc-
tuations ⟨v2(r, t)⟩r do not increase steadily with time (Fig. 2a). Instead, 

at early times, when the crowd gathers, the velocity fluctuations are 
small and stationary. However, about 30 minutes before the festival 
opening, when the density reaches a critical value of ρ* = (4.0 ± 0.5) m−2, 
the crowd dynamics undergoes a sharp transition captured by a linear 
increase of ⟨v2(r, t)⟩r augmented by activity bursts (Fig. 2a). These bursts 
are localized not only in time but also in space. The two snapshots of 
the speed field v(r, t) = ∣v(r, t)∣ in Fig. 2b contrast the quiet and homo-
geneous dynamics in the dilute regime (left) with the unsteady and 
heterogeneous motion that emerges in denser crowds (right) (see also 
Supplementary Videos 6 and 7). Computing the speed-field correla-
tions and the associated correlation length ξv 2 (Fig. 2c), we find that 
the hotspots where the crowd flows at high speed extend at most over 
a few metres regardless of the crowd density (Fig. 2c,d). Furthermore, 
plotting the local speed of the crowd against its local density in Sup-
plementary Fig. 1, we find that the two quantities do not correlate. In 
the crowd-modelling language, the concept of fundamental diagram 
does not apply to our dense crowds5.

The local orientation of the spontaneous flows v r t^ ( , ) reveals a richer 
behaviour (Fig. 2e,f). In Fig. 2f, we can see that the orientational cor-
relation length ξv̂ increases sharply when macroscopic velocity fluc-
tuations emerge (when ρ(t) > ρ*). These measurements quantify the 
most striking feature seen in Supplementary Video 5: in densely packed 
crowds, groups of hundreds of individuals spontaneously move along 
the same direction without relying on any external guidance (Fig. 2d).
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Fig. 2 | Emergence of spatially correlated motion in dense crowds. a, Spatially 
averaged velocity fluctuations plotted versus time. The fluctuations increase 
about 30 minutes before the opening of the festival. The measurement error is 
smaller than the thickness of the solid lines given the integration over all the local 
velocities, and the running average over a 1-min interval. b, Heat maps of the local 
crowd speed at t = −57:15 and t = −00:30 (2023 data). The flows of dense crowds 
are heterogeneous. c, Spatial correlation function of the squared speed, Cv 2 , 
plotted versus the distance R for different times (2023). Inset: associated 
correlation lengths measured in 2022, 2023 and 2024, and normalized by the 
typical distance between two attendees. The thickness of the lines represents 
the combined errors on ξ and ρ. The error on ξ is estimated on the spatial 

resolution of the spatial correlations and the error on ρ is estimated on the 
typical fluctuations of the mean density against time. d, Illustrations of the 
extent of the orientation and speed correlations at t = −00:30. The correlations 
of v̂ reflect the directed motion of hundreds of individuals. e, Maps of the local 
orientation of the spontaneous flows in the crowd (same times as in b). In dense 
crowds, the orientation of the emergent flows correlates over more than 10 m. 
f, Spatial correlation function of the orientation field, C v̂, plotted versus the 
distance R for different times (2023). Inset: associated correlation lengths 
measured in 2022, 2023 and 2024, and normalized by the typical distance 
between two attendees. The thickness of the lines represents the combined 
errors on ξ and ρ.
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The temporal order of dense-crowd dynamics
To gain a deeper insight into the crowd flows, we characterize their 
spectral properties and reveal their temporal order. In Fig. 3a, we  
plot the power spectrum of the kinetic energy in the dense regime 
S ω ω( ) = ⟨ ( , ) ⟩2∣ ∣v rv r, where v(r, ω) is the Fourier transform of v(r, t) in 
the time domain. At high density, the velocity spectra consistently peak 
at a finite frequency ±ω0, where ω0 = (0.35 ± 0.05) rad s−1. This pivotal 
observation implies that the dynamics of the dense crowds is not cha-
otic but periodic in time: they feature underdamped oscillations with 
a period of about 18 s. We stress that this period is: (1) not set by any 
mechanical, visual or acoustic stimulus; (2) much longer than all time-
scales associated with human body motion; and (3) not observed in 
the dilute regime (Extended Data Fig. 2). We can unambiguously con-
clude that the emergence of oscillations in dense crowds is a collective 
phenomenon.

To grasp the nature and origin of this collective dynamics, we plot 
the spectra of the orientation and speed fields in Fig. 3b,c. We find that 
the peak in the kinetic energy spectrum solely stems from orientational 
oscillations. By contrast, the magnitude of the flow does not oscillate 
in time and undergoes aperiodic fluctuations; its spectrum remains 
peaked around ω = 0 at all densities. These spectral properties tell us 
that the crowd oscillations do not stem from back-and-forth motions, 
but from orbital trajectories followed by the individuals packed in the 
crowds. This conclusion is further confirmed by the tracking of their 
Lagrangian trajectories, shown in Fig. 3d.

To confirm that our findings apply more broadly, and do not rely on 
any prior information gathered by the attendees of the San Fermín fes-
tival, we analyse the publicly available recordings of the Duisburg Love 
Parade disaster4 (https://www.youtube.com/watch?v=QpzISdBE3dA). 
Although the crowd dynamics at the onset of the 2010 stampede have 
been consistently referred to as ‘turbulent’4, ref. 21 reported periodic 
velocity oscillations. Running our data analysis on raw videos, we find 
that when the crowd density was as high as 8 ± 1 m−2, the Duisburg crowd 
featured the exact same oscillations as the Chupinazo crowd: they do 
not reflect linear swaying motion21, but the emergence of chiral orien-
tational oscillations characterized in Fig. 3b,c. Crowd quakes are not 
turbulent but periodic.

To better understand how the state of the crowd evolves as the mean 
density increases, we perform a time–frequency analysis of the flows 
measured in the Chupinazo crowds in Fig. 3f. We plot the variations  
of the instantaneous kinetic energy spectrum Sv(ω; t) = ⟨∣v(r, ω; t)∣2⟩r,  
and indicate the values ω0(t) of the pulsation at the maxima of the 
kinetic energy (v(r, ω; t) represents the Fourier transform of the velo
city field within 3-min-long time intervals). The evolution of ω0 with ρ 
shows that the transition from noisy to coherent oscillatory flows is  
very sharp and occurs at ρ* = (4.0 ± 0.5) m−2, when the velocity fluctua-
tions start increasing with crowd density (Fig. 2a). ω0 then decreases 
slowly (Fig. 3f), whereas the temporal coherence of the oscillations 
increases with ρ (Extended Data Fig. 3). The comparison between the 
variations of Sv(ω0; t) and the total speed fluctuations in Fig. 3g con-
firms that the kinetic energy of the crowd is chiefly determined by its 
emergent oscillatory motion.

We stress that this dynamics is qualitatively different from the 
stop-and-go waves observed when dense polarized crowds move uni-
directionally3,14,22. The stop-and-go waves are by definition associated 
with speed oscillations of unidirectional flows. The chiral oscillations we 
have uncovered are also markedly different from the mosh-pit tradition 
of heavy-metal concerts18. In this setting, the crowds are organized into 
long-lived vortices, which we have never observed in ‘crowd quakes’.

At this stage, it is worth discussing the practical implications 
of our main findings. When the crowd density reaches its maximal 
value, groups of several hundreds of confined people can undergo 
self-sustained oscillations over metres. The mass of these macroscopic 
groups, represented by the yellow circle in Fig. 2d, can exceed 10 tons. 

We hence conclude that monitoring the evolution of ω0(t) in real time, 
on raw images, can provide a very effective strategy to anticipate dan-
gerous mass motion in dense crowds. As a matter of fact, the transition 
to oscillatory motion is very sharp, and is unambiguously detectable 
while the amplitude of the displacements remains smaller than the 
people size (Fig. 3f and Extended Data Fig. 3). Furthermore, detecting 
spontaneous oscillations does not rely on any advanced detection 
and tracking algorithms. Our spectral analysis should provide a read-
ily applicable tool to anticipate the uncontrolled and self-sustained 
motions that can emerge in dense crowds.

Dense crowds are odd frictional matter
Beyond its practical significance, the discovery of collective chiral 
oscillations requires a theoretical explanation rooted in fundamen-
tal physics principles. To construct this theory, we first identify the 
role of confinement, and quantify the emergent chirality of the crowd 
dynamics. These two results will prove to be instrumental to our math-
ematical model.

To address the role of confinement, we perform an additional series 
of measurements after the festival opening, when a security team splits 
the crowd into two halves (Fig. 3e and Supplementary Video 4). We find 
that the two decoupled crowds still oscillate but at a higher frequency. 
We measure the shortest dimension of the crowds before and after the 
festival opening, and the extent of the region of space where the 2010 
Love Parade crowd featured chiral oscillations (Methods). Figure 3h 
shows that the velocity spectra of these markedly different crowds 
peak at the same value when rescaling the frequency ω by the inverse 
of the confinement length L. This result strongly suggests that the 
period of the emergent oscillations depends on confinement, and is 
not an intrinsic ‘material’ property.

We now focus on the chirality of the crowd dynamics. The oscillations 
of the flow field, and the resulting orbits of the Lagrangian trajecto-
ries, are chiral. In principle, the parity of the dynamics could be either 
spontaneously broken, or imprinted in the intrinsic handedness of 
the human bodies or in chiral behavioural factors previously reported 
in pedestrian groups18,23. To distinguish between these scenarios, we 
measure the local handedness of the oscillations as follows. By apply-
ing a band-pass filter to the velocity field, we focus on the oscillatory 
dynamics at ω0 and filter out the additional random motion of the crowd 
(Methods). We then define a spin field ϵ(r, t) which takes the value ±1 
when the filtered velocity rotates in a clockwise or anticlockwise direc-
tion. Figure 4a illustrates the temporal evolution of ϵ(r, t) in a dense 
crowd (see also Supplementary Video 8). The spin field is not homo-
geneous in space and fluctuates in time: the handedness of the chiral 
oscillations is not a priori determined. In addition, the distribution of 
the local and instantaneous spin values is perfectly symmetric (Fig. 4b). 
These observations readily imply that the chirality of the oscillatory 
motion stems from spontaneous symmetry breaking. In Fig. 4c, we show 
the evolution of the correlation length of the spin field ξϵ (Methods). It 
shows that groups oscillating with the same handedness extend across 
system-spanning scales.

With these last observations, we are now equipped to answer the 
question of how dense crowds self-organize into coherent chiral oscilla-
tors. Regardless of the microscopic mechanisms that power the motion 
of people, and dictate their interactions, the macroscopic dynamics 
of the crowd obeys a fundamental law: linear-momentum conserva-
tion. As we focus on the temporal dynamics, we perform a mean-field 
approximation and disregard the spatial heterogeneities of the crowd. 
Momentum equation then reduces to Newton’s second law: ∂tv = f/ρ, 
where f is the total body force density experienced by the crowd and 
v is the velocity of its centre of mass. Here f = fC + fF models the inter-
actions with the confining walls fC and the friction with the ground fF 
(ref. 12). Our theory consists of determining the constitutive relations 
that define fC and fF without resorting to any behavioural conjecture.

https://www.youtube.com/watch?v=QpzISdBE3dA


116  |  Nature  |  Vol 638  |  6 February 2025

Article

a

0

 (rad s–1)

–2 2

102

101

100

K
in

et
ic

 e
ne

rg
y

b

0

 (rad s–1)

–2 2

O
rie

nt
at

io
n 

sp
ec

tr
a

100

101

102

c

0
 (rad s–1)

–2 2

S
p

ee
d

 s
p

ec
tr

a

103

102

101

100

–01:35 –01:25 –01:15 –01:05 –00:55

Time (min:s)

x

y

d

L1

L2

To
w

n 
H

al
l

L0

Love Parade 20102022 20242019 2023 Theory

e

3 54 6

4

6

2

0

E
ne

rg
y 

d
en

si
ty

 (1
0–2

 m
2  s

–2
)

Average kinetic energy
Peak area

g

L2

L1

L0

LP

h
K

in
et

ic
 e

ne
rg

y

103

101

105

–20
L (rad m s–1)

10–10 200

0.5 2.51.0 2.01.5

3 4 5 6

〈 〉r (m
–2)

〈 〉r (m
–2)

E
xp

erim
ents

N
um

erics

 (r
ad

 s
–1

) 0

1.0

0.5

0.5

0

1.0

f

c

*

Fig. 3 | Dense crowds oscillate spontaneously. For model details, see 
equations (1) and (2) and Methods. See Methods for simulation parameters.  
a, Power spectra of v (that is, the kinetic energy) measured in 2019, 2022, 2023 
and 2024 along with predictions from our mechanical model. The spectra are 
shifted for increased readability. b,c, Normalized power spectra of v̂ (b) and v2 
(c) measured in 2019, 2022, 2023 and 2024, as well as in the Love Parade 2010, 
and compared with predictions from our mechanical model. The spectra are 
shifted for increased readability. d, Raw trajectories tracked in the 2023 crowd. 
We do not observe sequences of back-and-forth motion. e, Illustrations of the 
different confinement lengths used in the rescaled spectra shown in h. It is 
noted that L0 and L1 extend up to the wall located at the bottom of the image, 
which is not visible in the current view. f, Heat maps in logarithmic scale 
showing the variations of the kinetic energy spectrum with the spatially 
averaged density (experiments), and with the windsock parameter β/βc of our 

numeric simulations. The black dots indicate the value of ω0 and the vertical 
dashed line represents ρ* and β = βc. The dashed grey line in the bottom panel 
represents the theoretical evolution of ω0 with β/βc. For β < βc, the spectra are 
flat, so we set ω0 = 0. The experimental error bars were estimated manually.  
g, Variations of the total kinetic energy and of the area below the peak of the 
power spectrum (ω ∈ [0.25, 0.40] rad s−1) with the mean crowd density (2023). 
Oscillatory dynamics dominate the kinetic energy of the crowd. h, Normalized 
power spectra of v plotted against rescaled pulsation ωL, where L is the 
confinement length. The spectra measured with the confinement length L0 
correspond to those shown in a. The spectra measured with the confinement 
length L1 and L2 correspond to the crowd dynamics during the orchestra 
performance (see e). The measured widths are L0 = 23.1 m, L1 = 10.0 m, L2 = 9.1 m 
(Chupinazo) and LP = 11 m (Love Parade 2010). The dotted black lines represent 
the rescaled pulsation ω0L.
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The confining force hinders the displacement of the crowd u (v = ∂tu). 
We therefore posit that fC derives from a potential V: fC = −∇V(u). It is 
indeed clear that in closely packed crowds, fC chiefly originates from the 
contact interactions between the (soft) individuals, and with the rigid 
walls. In this regime, it derives from a confining potential V (Fig. 5a). 
The friction force is more subtle. We decompose it as the sum of two 
terms sketched in Fig. 5b: a standard passive drag −γρv relaxes velocity 
fluctuations, and a propulsive-friction term ρp reflects the conversion 
of body deformations into motion. The crowd dynamics then takes 
the compact form

γ k∂ = − + − , (1)tv v p u

where we performed a harmonic approximation to write uV kρu( ) = 1
2

2,  
where k is the stiffness of the confining potential. However, we cannot 
approximate p by a constant vector, as it would merely induce a finite 
directed displacement of the crowd. We therefore need to account for 
the dynamics of p, an internal degree of freedom that embodies both 
physical and cognitive aspects of the interactions between the crowd 
and the ground. This constitutive relation takes the generic form:

p p v p v pp pγ γ β α∂ = − + − ( × ) × . (2)t
2

where γp and γpβ are in principle nonlinear functions of v2, p2 and p ⋅ v 
(Methods and Supplementary Information). To write equation (2), we 
have used three symmetry considerations. First, it must be rotationally 
invariant given the isotropic velocity correlations seen in Extended Data 
Fig. 4. Second, it must be parity invariant as the chirality of the circular 
trajectories is not a priori prescribed. Lastly, we model homogeneous 
crowds. Therefore, equation (2) must be translationally invariant and 
hence cannot depend on u.

Given these symmetries, equation (2) is the most general first-order 
constitutive equation we can write, and it has a clear physical meaning. 
The first term damps the fluctuations of p at a rate γp and favours crowds 
in a force-free state. The second term aligns p with the flow, amplifies 
the propulsive force as the crowd moves, and therefore destabilizes the 
quiescent state. It is a ‘windsock’ term typical of dry active matter24,25. 
The third term illustrated in Fig. 5c is nonlinear and accounts for the 
reaction of the crowd against directed flows. It is generically non-zero in 
dry active matter as well26–28. It models a ‘weathercock’ effect: α2 rotates 
p in the direction opposite to the flow, while keeping its magnitude 
constant. In Supplementary Information, we thoroughly discuss the 
role of all nonlinearities and inertia, and demonstrate that orientational 
oscillations at constant speed require α2 to be finite and positive.

To test the predictive power of our theory, we focus here on its over-
damped limit and show that it provides an accurate description of all 

our experimental findings. Neglecting inertia, equation (1) defines a 
four-dimensional dynamical system whose steady states reflect the 
two dynamics observed in our crowds (Methods). When confine-
ment and friction are strong enough to stabilize the dynamics against 
the ‘windsock’ effect, there exists only one stable fixed point where 
p = v = 0. It corresponds to the quiescent state of the dilute crowds 
(ρ < ρ*). Conversely when β is large enough, the parity symmetry of the 
dynamics is spontaneously broken. The quiescent crowd undergoes 
a non-reciprocal transition7 towards a chiral state where both v and p 
rotate spontaneously, while keeping their norm constant (Fig. 3b,c). 
This dynamics captures the collective oscillations of our dense crowds.

To go beyond this qualitative comparison, we study numerically 
how v and p responds to Langevin noise sources and compute the 
power spectra of the crowd flows. Our numerical simulations correctly 
account for all our experimental findings. First, we find that the kinetic 
energy spectrum shows a clear peak at a finite frequency ω0(β) past the 
bifurcation threshold βc; it is nearly flat with no finite-frequency feature 
below βc (Fig. 3f). Remarkably, our analytical theory and simulations 
accurately capture: (1) the chiral oscillations of the flow orientation and 
the incoherent fluctuations of its magnitude (Fig. 3a–c and Extended 
Data Fig. 5d); (2) the discontinuous jump followed by a slow decrease of  
ω0 past the onset of spontaneous oscillations (Fig. 3f); (3) the fat tails of 
the kinetic energy spectrum (Fig. 3a–c); and (4) the equal probability 
of clockwise and anticlockwise chiral motion (Fig. 4b). Lastly, we show 
in Methods that equations (1) and (2) predict that the frequency of the 
chiral oscillations should decrease with the system size in agreement 
with the ω0 ∝ 1/L scaling law shown in Fig. 3h.

We have built a predictive theory of dense crowds rooted in basic 
physics principles. However, the origin of periodic motion, that is, the 
existence of stable limit cycles, is not readily apparent from inspecting 
equations (1) and (2). To gain a deeper intuition, it is worth considering 
the asymptotic limit where the propulsive force relaxes faster than 
the flow (γp ≫ k/γ). This allows us to see that dense crowds provide a 
prototypical example of odd frictional matter. Integrating out the 
propulsive friction in equations (1) and (2), the dynamics in the chiral 
phase reduces to the equations of a particle living in a ‘Mexican hat’ 
potential Veff, and coupled to an odd-elastic spring29 of stiffness ±K⊥ 
that applies a force transverse to the displacement u (Methods and 
Supplementary Information):

γ V K∇∇∂ = − ( ) ± , (3)t eff ⊥
⊥u u u

where u z u= ×⊥ ̂  (ẑ is the unit vector in the vertical direction). Equ
ation (3) hence provides a straightforward explanation for the emer-
gence of spontaneous oscillations. As sketched in Fig. 5e, Veff sets the 
amplitude of the chiral orbits and odd elasticity sustains a uniform 
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Fig. 4 | Dense crowds support chiral oscillations with non-prescribed 
handedness. a, The colours indicate the local handedness ϵ(r, t) of the 
oscillatory displacements in a crowd where ⟨ρ(r, t)⟩r ≈ 6 m−2 (2023). We compute 
ϵ(r, t) for the oscillatory component of the dynamics by applying a band-pass 
filter ω ∈ [0.25, 0.40] rad s−1 to v(r, t) (Methods). b, Probability P(ϵ) of the spin 
variable in an approximately 7-min-long interval before the opening of the 

festival (2022, 2023 and 2024). In agreement with our theory, the parity of  
the dynamics is not explicitly broken (see equation (2) and Methods for the 
numerical parameters). The error bars are estimates based on the jackknife 
method (Methods). c, The correlation length ξϵ of ϵ(r, t) measures the size of the 
regions where the crowd oscillations have a uniform handedness (Methods). 
The thickness of the lines represents the measurement error.
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orbital dynamics along the circular ridge of the potential. Another 
useful analogy arises when taking a time derivative of equation (3).  
In steady states, it reduces to ∂tv = ±(K⊥/γ)v⊥ and corresponds to the 
dynamics of a charged particle in a magnetic field. The transverse force 
is analogous to the Lorentz force, and the periodic oscillations of dense 
crowds can be thought of as cyclotron orbits powered by odd frictional 
forces. However unlike in magnetic systems, and in typical realizations 
of odd matter, the handedness of the chiral trajectories is undetermined 
and results from a spontaneous symmetry breaking.

Conclusion
Through a combination of experimental measurements and theory, 
our findings show how collective chiral oscillations can spontaneously 
animate dense crowds in the absence of external stimuli. By repeat-
edly analysing the motion of dense crowds composed of thousands 
of individuals in a reproducible and safe environment, we revealed 
that their flows are not chaotic but periodic in time and locally chiral. 
Guided by these symmetry-breaking phenomena, we have constructed 
a general theory of dense-crowd motion that captures all our experi-
mental observations. We show that collective oscillations in dense 
crowds arise from a non-reciprocal phase transition towards a chiral 
oscillatory state. Not only does this description remain consistent 
across four occurrences of the San Fermín festival but also it holds 
for the 2010 Love Parade disaster. Therefore our findings provide a 
practical strategy to anticipate dangerous crowd behaviour in confined 
environments. From a fundamental perspective, our study establishes 
a robust mechanical framework for understanding the dynamics of 
crowds and animal groups, and more broadly, offers a perspective on 
emergent chirality in non-equilibrium matter.
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Methods

Image acquisition, density and velocity measurements in the 
Chupinazo crowd
In this section, we explain how we film the dense crowds and how we 
convert raw images into quantitative data.

The Chupinazo crowd. The crowds we film in Pamplona are composed 
of the attendees of the San Fermín festival. Most of them are locals 
who are well aware of how the event unfolds: they know the dress code 
and when to raise their red handkerchiefs, and they eagerly await the 
orchestra after the festival opening speech and fireworks. Many for-
eign tourists are also present, and the crowd consists mostly of young 
adults of all genders. As the Chupinazo is broadcast on the Spanish 
national networks and popularized internationally, we can assume 
that most of the participants are aware of the high crowd density that 
they will be confronted with before gathering. As a result, participants 
of the Chupinazo come in a festive mood, with evident signs of alcohol 
consumption. When the crowd is sparse, small groups of people can be 
seen singing, clapping and lightly pushing each other without creat-
ing significant movement. However, when the crowd density exceeds 
ρ*, we observe high-amplitude motions, referred to as crowd quakes 
in a different context21. Unlike, for instance, at heavy-metal concerts, 
there are no signs of individuals actively pushing others when the 
crowd is dense; instead, people try protecting themselves from the 
crowd. Lastly, those unable to enter the square at the entrances keep on  
accessing the Plaza Consistorial and pushing inwards. Two entrances 
are blocked by police forces until just a few minutes before noon. Here, 
hundreds of people (mostly locals) try gathering in the already crowded 
square. The number of people on the Plaza Consistorial peaks at noon 
and can be as large as about 6,000 people.

We filmed four Chupinazo events, in 2019, 2022, 2023 and 2024. The 
2020 and 2021 editions were cancelled because of COVID-19 restric-
tions. The weather was sunny in 2019 and 2023. It was cloudy and rainy 
in 2022 and 2024. We were not informed of and did not observe any 
change in the organization of the ceremony.

Image acquisition. We recorded videos from the two observation spots 
indicated in Fig. 1b. In 2022, 2023 and 2024, we used Sony FDR-AX33 
and Sony FDR-AX43A camcorders on both spots. The frame rate was 
25 frames per second and the resolution was 3,840 × 2,160 pixels (4K 
videos). In 2019, we used telephoto lenses (Sigma 150–600 mm F5-6.3 
DG OS HSM ∣ S) mounted on Nikon D500 cameras with a frame rate of 
30 fps and a resolution of 3,840 × 2,160 pixels. We illustrate the obser-
vation set-up in Extended Data Fig. 6. The cameras were mounted on 
standard tripods on the balcony of the leftmost building (fifth floor 
of the tourism office of Pamplona, 2023 and 2024), and on custom 
mounts on the rightmost observation point (private balcony on the 
fourth floor of the highest building surrounding the Plaza Consistorial, 
2019, 2022, 2023 and 2024).

Image correction protocol. We used the same protocol as in ref. 12 
to correct for the perspective distortions. In short, we mapped the 
pixel coordinates (u, v) of every frame to a coordinate in the square 
frame (x, y, z). The goal was to generate images with fixed pixel dimen-
sions in metres. This was done using planar homography, assuming 
pinhole cameras and neglecting the height of the z axis30. To do so, we 
first selected a reference image of the plaza (Extended Data Fig. 7a) 
when clear of pedestrians. We chose a set of four points distributed 
over the square and matched them on a satellite view from Google 
Earth Pro (Extended Data Fig. 7b). We then computed the planar 
homography matrix using these four points from the two views and 
rescaled all the images accordingly. Finally, by measuring the dis-
tances on the satellite view in metres and in pixels, we determined 
the size of the pixels in metres. In the rescaled images, all the pixels 

have the same dimensions (Extended Data Fig. 7c). In Extended Data 
Fig. 7, we show the set of points used in 2023, on the raw image, the 
satellite view and the resulting rescaled image. The pixels on the cor-
rected images are almost squares and their dimensions respectively 
in the x, y directions correspond to 0.028 × 0.029 m, 0.046 × 0.045 m, 
0.012 × 0.012 m and 0.013 × 0.012 m in 2019, 2022, 2023 and 2024,  
respectively.

To estimate the relative error caused by the planar homography 
protocol, we compared the distances between the original reference 
points with the distances measured in our corrected images. We found 
the following relative errors respectively in the x, y directions: 1% × 12%, 
1% × 1%, 1% × 3% and 1% × 3% in 2019, 2022, 2023 and 2024, respectively.

As in ref. 12, we also corrected for the zero-height approximation. 
Previously, we assumed that all visible pixels in the images lie on the 
same plane as the ground. However, we observed the heads of pedes-
trians that are not on the ground. Here we recall the formula and give 
the values measured for the zero-height approximation correction. 
More details can be found in ref. 12. Let Δx′ represent the distance 
measured between two heads in images corrected for perspective 
distortion. Owing to the height of pedestrians, that distance is over-
estimated. Let Δx denote the distance between the feet of the same 
pedestrians in the same image. These distances are related by the 
following equation

x x
H h

H
Δ = Δ ′

−
, (4)

where H is the height of the observation spot and h is the typical height 
of pedestrians. This relationship is valid in all direction and is independ-
ent of the position in the image. We set h = 1.73 m based on the average 
height of Spanish people and we estimated H = 16 ± 1 m by using a pic-
ture of the buildings with pedestrians serving as a length reference31.

Finally, in 2019, the weather was sunny and the shadow cast by the 
buildings introduced artefacts in our particle image velocimetry (PIV) 
measurements (Fig. 1a). To address this issue, we performed an addi-
tional image processing step. We used a Python script available on 
GitHub to homogenize the brightness of the image32,33. This proce-
dure removed all the PIV artefacts that arise at the edge of the building 
shadows.

Time interval of unguided crowds. Each year, we focus on an approxi-
mately 1-h time interval. We defined the origin of time as when the 
festival attendees raise their red handkerchief to signal the opening 
of the festival and change their behaviour according to the Chupinazo 
tradition. This happens around noon, and before the festival officially 
starts no external guidance dictates the dynamics of the crowd. No 
acoustic, visual or mechanical signal coordinates the motion of the 
crowd.

Spatial delimitation of our measurements. Before the opening of 
the festival, part of the celebration consists of holding large flags and 
playing with big balloons on the square (Extended Data Fig. 7d). When 
we measured the density and velocity fields, we needed to make sure to 
consider only the regions of space devoid of these objects that obstruct 
our field of view.

To do so, we used a standard machine learning tool, YOLOv834.  
It is designed to detect specified objects on images. We trained it on 
15 images from 2019 and 2022 by manually annotating the polygons 
enclosing the balloons and flags on our pictures. In practice, we anno-
tated the images using the labelstudio software on the raw images. The 
area and position of the detected objects were then corrected using the 
planar homography parameters and converted into dynamical masks 
applied to every frame (Extended Data Fig. 7e). Both the density and 
the velocity fields were computed on the masked images (Extended 
Data Fig. 7f).



Detection of the attendees and density measurement. To detect the 
position of the head of the people in the crowds, we took advantage of 
the machine learning algorithm P2PNet35. It is designed to estimate the 
number of people in a picture based on a convolutional neural network 
pretrained on 300 images with dense crowds (ShanghaiTech dataset36). 
We further trained the neural network on 4 manually annotated images 
taken from our 2019, 2022 and 2023 footage. To annotate the images, we 
used a homemade Python script and trained P2PNet for 3,500 epochs 
of 4 batches. The discrepancy between the automated and manual 
counting procedures in the full field of view of a picture is smaller than 
5%. We detected the heads on the raw images (Fig. 1c,d).

We aimed to clean the data before computing the density by min-
imizing the impact of false positives and missed detections. Given 
that pedestrians continuously appear in the frames, they are more 
likely to be correctly detected compared with the occurrence of false 
positives or misses. We predicted that detection errors manifest as 
high-frequency ‘flashes’. To counteract this, we converted the detec-
tion data into a density field by applying a Gaussian convolution over 
the detected points where 3σ approximately equals the size of a head, 
σ being the typical width of the two-dimensional Gaussian. This density 
field was then averaged over 0.4 s, and a 33% threshold was applied to 
retain only points of high occurrence. A maxima-finding algorithm was 
subsequently employed to obtain the cleaned detection data.

To define the density field, we used the same windows (dimensions 
and locations) as the velocity field (Supplementary Table 1). In each 
window, approximately 1.5 × 1.5 m2 in size, we counted the number of 
people and divided this value by the window area. Given the quality of 
our images, we were able to detect the individuals and define the local 
density field in the region shown in Fig. 1b only for our 2022, 2023 and 
2024 images.

We used trackpy37 to measure the trajectories shown in Fig. 3d.

Measurement of the velocity field. We describe Chupinazo crowds  
as continua. As frequently used in fluid mechanics, we measured the 
Eulerian velocity field in the crowd using conventional PIV12. We used 
a typical window size of about 1.5 m and a typical time step of about  
0.5 s. The precise different values to characterize the observed dyna
mics are summarized in Supplementary Table 1. The measurement 
error of the two components of the velocity field in a single PIV box is 
of 0.1 m s−1 in 2019 and 2022, 0.05 m s−1 in 2023 and 2024.

Image acquisition, density and velocity measurements in the 
2010 Love Parade
In this section, we explain the origin of the data and the process of 
converting raw images into quantitative data.

The Love Parade 2010. The Love Parade 2010 was a music festival 
held in July in Duisburg, Germany4. During the event, 21 people died 
and more than 500 were injured at the main entry of the festival area 
(Extended Data Fig. 8). This traumatic event has been the subject of 
numerous scientific studies, also because a number of videos showing 
the convergence towards the catastrophe have been publicly released4.

Videos. Numerous recordings from mobile phones and cameras are 
available on the internet. The organizer released some camera foot-
age of the main entry where the catastrophes occurred, before they 
happened (https://www.youtube.com/watch?v=QpzISdBE3dA). We 
selected two clips (clip 1 from 14:04 to 15:46 and clip 2 from 19:24 to 
19:49) where we observed high-amplitude motion of the crowd.

Image correction protocol. We were unable to perform any image 
correction on the Love Parade 2010 data.

Density measurement. We were unable to measure the density in clip 
1 owing to the low resolution, which hindered detection and manual 

annotation. In clip 2, we annotated one image. We estimated the area 
covered by the field of view by measuring the shoulder-to-shoulder 
width of festival attendees in pixels and then converting it to metres. 
Our estimate of the crowd density is ρ = 8 ± 1 m−2.

Measurement of the velocity field. We used the same methodo
logy for the Chupinazo and the Love Parade crowds. We measured the 
Eulerian velocity field in the crowd using conventional PIV12. As not 
enough reference points are visible on the images to perform perspec-
tive correction, we used the raw images to measure the approximated 
velocity field. We summarize the values of the different parameters 
chosen to characterize the observed dynamics in Supplementary  
Table 1.

Power spectra. We use the same methodology as for the Chupinazo 
crowds.

Characterization tools
We developed all our numerical tools using mostly the numpy package 
of the Python numerical language.

Radial pair correlation function. We used data from the detection of 
the attendees (see above) and the function static.pair_correlation_2d 
from trackpy37, which takes into account non-periodic boundary condi-
tions. The radial pair correlation function is computed in a rectangle 
devoid of flags and balloons and averaged over a period of about 7 min-
utes in the densest crowds (see below).

Power spectra. To compute the power spectra of the velocity v(r, t), 
velocity orientation v r t( , )̂ , and squared speed v2(r, t) fields of Fig. 3a–c, 
we first computed the discrete-time Fourier transform for each position 
r using the numpy.fft.fft function. For the sake of consistency, we nor-
malized these values by the total duration of the signal. A perfect cosine 
signal with pulsation ω0 would have a discrete-time Fourier transform 
showing peaks of amplitude 1/2 at ±ω0. The local spectra are given by 
the squared norm of each discrete-time Fourier transform signal.  
Finally, we performed spatial averages of the local spectra to compute 
Sv(ω), v̂S ω( ) and S ω( )v 2 . These spectra were computed using signals of 
duration 6 min 30 s for the 2023 data, 7 min 30 s for the 2022 data and 
30 s for the 2019 data. In 2019, the safety system of our cameras reset 
them approximately every 30 s owing to overheating. We therefore 
computed our spectra over shorter time intervals, but averaged them 
over all our 30-s-long acquisitions.

To accurately compare the 2019, 2022 and 2023 spectra, we divided 
the spectra by their mean value between ω = −2 rad s−1 and ω = 2 rad s−1 
and the final spectra were obtained after a final smoothing over 5 sub-
sequent data points.

Time–frequency characterization. To perform the time–frequency 
analysis of Fig. 3f, we applied the above method to compute the power 
spectra on time intervals [t, t + Δt] with Δt = 3 min and repeated the same 
operation for increasing values of t with a step of 1 s.

Correlation lengths. To compute the radial correlation functions 
of the velocity, orientation and speed fields, we first computed their 
two-dimensional spatial correlation functions. The value of the cor-
relation Cf(R) of a vector function f(r, t) is given by

R
f r f r R

f r
f

r

r

C
δ t δ t

δ t
( ) =

⟨ ( , ) ⋅ ( + , )⟩

⟨ ( , )⟩
, (5)

t

t

,
2

,

where δf(r, t) = f(r, t) − ⟨f(r, t)⟩r,t and with ⟨⋅⟩r,t standing for an aver-
age over positions r and time t. In practice, we compute the value of 
δf at the point r + R using numpy.roll to shift the data that form the 
vector δf(r). We then use numpy.nanmean to compute the averages.  

https://www.youtube.com/watch?v=QpzISdBE3dA
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We parallelized this computation using multiprocessing.Pool. To com-
pute the radial correlation function, we created bins corresponding to 
radial displacements. For a bin ranging from r0 to r0 + δr, we averaged 
all the values of the two-dimensional correlation function C(R) for 
r0 ≤ ∣R∣ < r0 + δr. We defined the instantaneous correlations by perform-
ing the time average over 3-min-long intervals. We defined the correla-
tion lengths as the distances at which the radial correlation functions 
reach the value 0.1.

Chirality of the local dynamics. Here we focus on the oscillatory com-
ponent of the crowd motion. We first applied a temporal band-pass 
filter to the velocity field. The filter width was set to the full-width at 
three-quarter maximum height of the power spectra shown in Fig. 3a. 
In practice, we performed a time Fourier transform on the velocity 
field, we applied the band-pass filter and performed an inverse Fourier 
transform.

We defined the local spin field ϵ(r, t) as the sign of the instantaneous 
increment of the angle θ made by the velocity with the x axis. For each 
position in space, we computed the orientation of the filtered velo
city field θ ∈ [−π, π]. We healed the discontinuities of θ(r, t) so that 
θ ∈ [−∞, ∞]. We performed a moving average of time window T0/2, with 
T0 = 2π/ω0 and ω0 the pulsation of the maximum of the power spectrum. 
At each position r and time t, we measure the sign ϵ(r, t) of the time 
variations of θ(r, t), which defines the spin field ϵ(r, t) = ±1. We illustrate 
this protocol in Extended Data Fig. 9 and show the resulting spin fields 
for the 2022 event, which reveal the same phenomenology as in Fig. 4. 
We estimated the error bars of the spin field distribution using the 
jackknife method over 10,000 samples38. For the correlation length of 
the spin field, we ran the band-pass filter on time windows of 3 min and 
computed the correlation length as detailed above.

Phenomenological inference of the active friction laws
In this section, we show that confinement and odd frictional forces 
conspire to yield spontaneous chiral oscillations at an incoherent speed 
in dense crowds.

Odd friction and spontaneous symmetry breaking. Our starting 
point is the mean-field description of the crowd mechanics, which  
takes the form of Newton’s second law ∂tv = f/ρ, where ρ is the mass 
density and f is the sum of all the body forces originating from the  
interactions between the pedestrians and the ground or between the 
pedestrians and the confining walls. We decompose it into four terms: 
f(t) = −ργv(t) + ρp(t) − ρku + ρσζ(t), where the first drag term classi-
cally models the damping of the velocity fluctuations via the momen-
tum exchange with the ground. In the spirit of a Landau expansion, we 
retain the lowest-order term in v and consider a linear drag force. The 
second term is what we refer to as an active friction with the ground.  
It is a vector that models the conversion of the body deformations into 
propulsive forces. The third term stems from the confinement of the 
crowd by walls. Again, in the spirit of a Landau expansion, we retain the 
lowest-order term in the displacement variable u (with v = ∂tu). The 
last term in the force definition is a Langevin noise source that classi-
cally accounts for the coupling to all the fast degrees of freedom  
ignored within our mean-field picture. ζ(t) is a Gaussian random noise 
of zero mean and covariance t t δ t t⟨ ( ) ( ′)⟩ = ( − ′)Iζ ζ .

In Supplementary Information, we show that the constitutive 
relation that defines the propulsive force p cannot take the form 
p(t) = f(v(t), u(t)) (see also Extended Data Fig. 5a–c). In others words, 
we must take into account the proper dynamics of p. Because the crowd 
is globally isotropic (Extended Data Fig. 4) and has no reference posi-
tion in space, the constitutive equation must be independent of u and 
invariant upon rotations. Furthermore, our experimental observations 
show that the parity symmetry of the crowd is not explicitly broken. We 
thus proceed to a systematic Landau expansion to find the most general 
constitutive equation. Restricting ourselves to first-order derivatives in 

time and keeping only the leading-order nonlinearities, corresponding 
to the six third-order terms, we find

p p v p p v v p v

p v p ζ

p p

p p

γ η η γ β η η η

α σ

∂ = − (1 + + ) + (1 − − − ⋅ )

− ( × ) × + .
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where ηs are material parameters and ζp(t) is another Gaussian random 
noise of zero mean, covariance ζ ζp pt t δ t t⟨ ( ) ( ′)⟩ = ( − ′)I and uncorrela
ted from ζ(t). We discuss in Supplementary Information the effect of  
all terms and all nonlinearities in Newton’s second law and equation (6). 
We study them one at a time to single out their impact on the crowd 
dynamics. The conclusion of this thorough investigation is that our 
experimental findings are nicely captured by a minimal model where 
inertia plays a negligible role and where only two nonlinearities rule 
the dynamics of the p variable. The α2 term which we refer to as a ‘weath-
ercock’ term in the main text is essential to yield chiral orientational 
oscillation. However a second nonlinearity is required to stabilize the 
oscillatory dynamics against fluctuations. More accurately, we show 
that the dynamics is unstable when all the ηi vanish. However, stable 
chiral states can emerge when η1 ≠ 0, η3 ≠ 0 or η5 ≠ 0. As the stability 
domain of the chiral states is much larger when stabilized by a nonlin-
ear windsock effect (η3 and η5), we therefore focus on a minimal model 
where we disregard inertia and retain only the α2 and η3 nonlinearities.

The mechanics of dense crowds is then captured by a minimal set 
of two equations:

u u p ζ

p p p u p u p ζp p
p

p p
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t

t t t
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where we have set all ηi to zero, except η3 ≡ η/γp. The first equation 
corresponds to Newton’s second law and the second equation is the 
constitutive equation of the crowds. We provide a physical interpre-
tation of this constitutive relation in the main text. The nonlinear η 
term implies that the amplitude of the windsock effect decreases as 
the amplitude of the propulsive force increases. We also note that this 
equation is strikingly similar to the mechanical description of active 
solid metamaterials derived in ref. 27 from a microscopic model. Only 
the sign in front of the double cross-product is different.

Although equation (7) has a clear physical meaning, it is unpractical 
to investigate the fixed points, the limit cycles and the stability of the 
dynamics. To characterise the deterministic dynamics of our nonlinear 
system (σ = σp = 0), we write u ûv= , with u the norm of u and û its ori-
entation. We then inject this form into equation (7), and express the 
dynamics in terms of the three variables u (the displacement magni-
tude), v = ∂tu (the ‘speed’) and ûΩ = (∂ )t

2 2 (the square of the angular 
velocity of û). We then find

(8)
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with βc = γ + k/γp. We stress here that the dynamical variable Ω2 does 
not prescribe the direction of rotation of u but only its rate of change.



Fixed points and limit cycles. We now look for the fixed points of the 
dynamics (u⋆, v⋆, Ω 2

⋆) by setting the partial derivatives to zero in equa-
tion (8). The first fixed point is trivial and corresponds to quiescent 
crowds where u⋆ = 0 and v⋆ = 0, whereas Ω 2

⋆  is ill defined as the dis
placement vanishes (u⋆ = 0). There also exists a second pair of 
non-trivial fixed points for β > βc characterized by v⋆ = 0
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This second pair of fixed point corresponds to two circular limit 
cycles for u (and v). The radius of the limit cycles is u⋆ for u (and u⋆∣Ω⋆∣ 
for v), and they are swept at opposite angular frequencies ±Ω⋆. To make 
sure that these two limit cycles explain the oscillatory dynamics of our 
crowds, we must first show that they are stable to small perturbations.

Linear stability of the fixed points and limit cycles. We now study the 
linear stability of the two fixed points. For the trivial fixed point, we lin-
earize equation (7) in the noiseless limit around (u⋆ = 0, p⋆ = 0), and find
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The trace of the matrix is γp(β − βc)/γ. It changes sign when β = βc. 
The determinant is given by kγp/γ and always remains positive. We 
thus conclude that the trivial fixed point is stable if β < βc, as the matrix 
has two eigenvalues with a negative real part. Instead, the matrix has 
two eigenvalues of positive real part when β > βc and the quiescent 
fixed point hence becomes unstable. This criterion coincides with the 
emergence of the limit cycles.

We now address the stability of the two limit cycles. We set u = u⋆ + δu,  
v = δv and ⋆Ω Ω δΩ= +2 2 2 and linearize the above equations with res
pect to δu, δv and δΩ2. We find
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The eigenvalues μ of the Jacobian matrix are solutions of the cubic 
equation −μ3 + τμ2 + νμ + Δ = 0, with τ the trace and Δ the determinant. 
The three coefficients of the characteristic polynomial depend on β 
and read
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The limit cycles are stable if the three eigenvalues have a negative real 
part. This is equivalent to imposing that τ < 0, Δ < 0 and ν + Δ/τ < 0. In 
Supplementary Information, we analyse extensively the conditions 
under which these three inequalities are verified. We show that there 
are ranges of parameters for which the limit cycles are stable for all 
values of β, leading to stable chiral states above βc. Instead, there are 
some other ranges of parameters for which the limit cycles can desta-
bilize for some values of β. Our results are summarized in the stability 
diagram = (γγp/k, γη/α2) shown in Extended Data Fig. 10.

We have therefore shown that our mechanical model of confined 
dense crowds evolves according to a dynamics that cannot be cap-
tured by a steepest descent in an effective potential. This so-called 
non-reciprocal and nonlinear dynamics is here characterized by a 
mean-field phase transition (a bifurcation) from a trivial state to a 
chiral state where v chases p while p runs away from v along circular 
trajectories swept at constant rate. This stationary chiral dynamics can 
operate along two possible directions selected by initial conditions. 
The parity symmetry of the dynamics is spontaneously broken.

Crowds as frictional odd matter. Our stability analysis shows that 
the propulsive force must relax faster than the displacement field to 
observe spontaneous oscillations: γp > k/γ. This finding a posteriori 
justifies the relevance of the asymptotic analysis γp ≫ k/γ discussed in 
the main text, which we now detail (see also Supplementary Informa-
tion). In this limit, we can ignore the time variations of the fast variable 
p, which is instantly slaved to u (in the absence of noise). We can then 
generically decompose p as p = (−K∥ + k)u + K⊥u⊥, and solve for K∥ and 
K⊥ by using this form in the algebraic equation satisfied by p:
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where we have used Newton’s second law to express v = ∂tu, as a function 
of u and p. We are then left with a single equation for the degree of free-
dom u that takes the form ∂tu = −∇Veff(u) ± (K⊥/γ)u⊥, where ∇Veff(u) = K∥u. 
The dynamics of the crowd is akin to that of a particle falling in an effec-
tive potential Veff and couples to a nonlinear odd spring K⊥. Again the 
sign of K⊥ is not a priori specified and can take both values with equal 
probability. We sketch the dynamics of the particle in Fig. 5e. Deep in the 
chiral phase (β ≫ βc), Veff has the shape of a ‘Mexican hat’. Once the parti-
cle reaches the minimum of the potential, u takes a finite value. In turn, 
the particle dynamics orbits at constant speed along the ground-state 
circle under the action of of the odd spring force either in the clockwise 
or anticlockwise direction depending of the sign of K⊥. This minimal 
model nicely captures the chiral dynamics of the dense crowds and 
provides an intuitive explanation for its nonlinear dynamics.

Numerical methods
Numerical integration schemes. We solve equation (7) using a fourth 
order Runge–Kutta scheme39, with a time step δt (see below). We com-
pute the velocity, orientation and speed spectra for nrun different rea
lizations of the random noise forces and random initial conditions. 
All spectra are measured in a steady-state regime after nst preliminary 
integration steps specified below.

The definition of the spin ϵ(t) requires filtering the velocity  
field. To do so, we computed the mean velocity spectrum Sv over  
the nrun runs and performed a moving average of size nw = 10. We then 
defined our band-pass filter by considering only the angular fre
quencies ω for which the value of the smoothed spectra satisfies 

v v v vS ω S ω S ω Smax ( ′) − ( ) ≤ [max ( ′) − (0)]/4ω ω′ ′  (quarter-difference bet
ween the maximum and the value of the spectrum at zero angular fre-
quency). We finally used inverse fast Fourier transform to compute the 
filtered signals ∼vx and ∼vy. From these filtered signals, we then deter-
mined the angle that the filtered velocity field makes with the x axis: 

∼ ∼θ v v= arctan( / )y x . The resulting discontinuous time series was defined 

(12)
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on the unit circle. We then unwound this time series to define the ori-
entation angle over R. Finally, we defined the spin ϵ(t) as the sign of the 
difference between two consecutive values of the orientation angle.

We estimated the error bars associated with the power spectra and 
histograms of ϵ using the jackknife method over nrun measurements38.

Simulation parameters. Without loss of generality, we can set γ = 1 
and α = 1, which amounts to defining our units of length and time. The 
model has then six control parameters, which are β, γp, k, η, σ and σp. To 
integrate the equations of motion, we set δt = 0.001, so that the damp-
ing coefficients in equations (1) and (2) verify k/γ ≳ 20δt and 1/γp ≳ 100δt 
for the typical values of γp and k that we consider. This value of δt also 
ensures that the angular frequency Ω⋆ always remains in our simula-
tion window. The number of steps n is set so that the system explores 
exhaustively its phase space. Finally, the number of steps nst = 1.5 × 105 
is set so that the system reaches the limit cycle when β > βc.

The nrun = 100 simulations are initialized on one of the limit cycles in 
the absence of noise when β > βc, namely, u φ= (cos +u x̂⋆  φsin )ŷ  with φ 
drawn uniformly in the range [−π, π], and ̂⋆ ⋆ ⋆p xu k γ Ω φ ϕ= + [cos( + ) +2 2 2   

̂
⋆ yφ ϕsin( + ) ], where ⋆ ⋆ϕ γΩ ktan = /  with equal probability for the sign  

of Ω⋆. Otherwise, the simulations are initialized from u = 0 and p = 0.
For Fig. 3a–c, we used k = 0.027, γ = 1.00, γp = 18.00, β/βc = 1.10, 

η = 0.45, σ = 0.00 and σp = 2.00. For Fig. 3f, we used γ = 1.00, γp = 18.00, 
η = 0.45, σ = 2.00 and σp = 2.00.

Data availability
The data that support the plots within this paper are available on 
Zenodo at https://doi.org/10.5281/zenodo.14050598 (ref. 40).

Code availability
All the simulation codes that support this study are available on Zenodo 
at https://doi.org/10.5281/zenodo.14050598 (ref. 40).
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Extended Data Fig. 1 | Top views of the Chupinazo crowd. The crowd first 
gathers and fills the plaza Consistorial. When the average density of people 
exceeds ~ 4 m−2 the crowd undergoes spontaneous oscillations. In our article  
we investigate solely these two regimes. Then, at noon, the festival starts and 

all attendees raise red handkerchiefs. Finally, several orchestras surrounded by 
the police force performs in the crowd, and exit the plaza Consistorial followed 
by the festival attendees.
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Extended Data Fig. 2 | Evolution of the kinetic energy spectra with the crowd 
density. Kinetic energy spectra Sv(ω) measured at three different times (time 
window: 3 mins). For each spectrum we indicate the mean value of the crowd 
density. a, d and g, At low density the spectra peak at zero: the crowd does not 

oscillate. b, e and h, When the mean density exceeds ~ 4 people per square 
meter, the kinetic energy spectra feature two peaks at finite frequency. The 
crowd oscillates. c, f and i, When the crowd density further increases, the peaks 
become narrower thereby indicating a longer persistence of the oscillations.



Extended Data Fig. 3 | In dense crowds, spontaneous oscillations dominate 
the speed fluctuations of the crowd flow. The oscillations become 
increasingly coherent as the density increases. a, d and g, Magnitude of  
the spatially averaged velocity fluctuations plotted versus time. b, e and h, Time- 
frequency plots of the kinetic energy spectra (time window: 3 mins). Black dots: 
maxima of the energy spectra, i.e., oscillation frequency of the crowd flow. 

Same plot as in Fig. 3f of the text and comparison with the 2022 and 2024 data 
which show the same trends. c, f and i, Evolution of the relaxation time τ(t) of 
the spontaneous oscillations measured as the full width at half maximum of  
the instantaneous kinetic energy spectra. We illustrate the definition of τ in 
Extended Data Fig. 2.
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Extended Data Fig. 4 | Velocity correlations in dense crowds. a, The heatmap 
represents the values of the spatial autocorrelation of the velocity field measured 
in 2022 in the dense regime. The dashed line marks where the correlation value 

reaches 0.1. b, Same plot for the 2023 experiments. c, Same plot for the 2024 
experiments.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Determination of the constitutive relation p({u}, {v}) 
for the active friction. To determine how the active friction force depends  
on the local state of the crowd we compute the spectra Sv, Sv 2, the distribution 
of the spin variable ϵ(t), the amplitude of velocity fluctuations v⋆ (radius of  
the limit cycles when they exist) and the angular frequency of oscillation Ω⋆. 

The different models are detailed in the SI. Only the overdamped model with  
a spontaneous parity breaking (d) is able to reproduce the salient features 
observed in our experiments. Simulation parameters are γ = 1, α = 1, γp = 18, 
k = 0.027, η = 0.45, σ = 0, σp = 2 and βc = γ + k/γp (d) and γ = 1, α = 1, γp = 50, σ = 0, 
σp = 5 and βc = γ (e).



Extended Data Fig. 6 | Observation setup. a, Aerial view of the plaza Consistorial 
and location of the two observation spots. The dashed lines show two typical 
pictures taken in 2022 (red) and 2023 (orange). b, Image taken from the leftmost 

spot at t = −00: 30. c, d, Pictures of our custom camera mounts fixed on a 
building balcony. e, Image taken from the rightmost spot at t = −00: 30.
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Extended Data Fig. 7 | Planar homography and dynamical masking of the 
perturbations to the field of view. a, Raw image (2023) of the plaza Consistorial. 
We identify four distinctive features on the ground and label their positions 
(green dots). b, Location of the four same spots on a satellite view (Google Earth 
Pro). c, Same image as in a after the planar homography correction (2023).  

d, Raw image showing balloons and flags held by the festival attendees (2022). 
e, Flags and balloons automatically detected by the YOLOv8 neural network 
and highlighted with bright colors. f, Velocity field measured on the corrected 
images around the flags and balloons only.



Extended Data Fig. 8 | Emergence of collective oscillations during the  
Love Parade 2010, Duisburg, Germany. a, Satellite view of the main entry to 
the Love Parade 2010 festival (Google Earth). The dotted squares indicate the 
fields of view of the two publicly available video clips we analysed (see Methods). 

Clip 1: green polygon; Clip 2: orange rectangle. b, Power spectra of the velocity 
field v, velocity orientation vv̂, and squared norm v2 corresponding to clip 1  
(see Methods). c, Same power spectra computed from clip 2 (see Methods).
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Extended Data Fig. 9 | Chiral dynamics of dense crowds and construction of 
the spin field. a, Time variations of the angle θ(r, t) made by the filtered velocity 
field with the x − axis for one position r (2023 data). The band-pass filter applied 
to v is a rectangular window for ω ∈ [0.25, 0.40] rad/s. b, Same time series as in a 
after unwinding the angular variable and smoothing it over a time window of 

width π/ω0, where ω0 = 0.32 rad/s is the oscillation frequency. Note that  
the angular frequency of v(r, t) is strongly persistent but changes in time.  
The handedness of the dynamics is an emergent dynamical property.  
c, Corresponding spin field measured at t = −02: 30 in 2023.



Extended Data Fig. 10 | Phase diagram representing the stability of the 
limit cycles of the overdamped model with an additional non-linearity. 
(term η3, see Methods and SI for further details). The region in pink corresponds 
to the range of parameters for which the limit cycles are stable for all values  
of the windsock parameter β. In the blue region, there are values of β for which 
the limit cycles are unstable. Because we do not observe chaotic motion of the 
crowd, the hydrodynamic coefficients characterizing the Chupinazo crowd in 
the overdamped regime lie in the pink region.
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